
Debugging Model-to-Model Transformations
J. Schönböck, G. Kappel, and M. Wimmer

Vienna University of Technology, Austria
Email: {lastname}@big.tuwien.ac.at

A. Kusel, W. Retschitzegger,
and W. Schwinger

Johannes Kepler University Linz, Austria
Email: {firstname.lastname}@jku.at

Abstract—Model-Driven Engineering places models as first-
class artifacts throughout the software lifecycle requiring the
availability of proper model transformation languages. Although
numerous languages are available, they lack convenient facilities
for debugging and supporting understanding of the transforma-
tion logic. This is not least because the underlying transforma-
tion engines operate on a low level of abstraction, hiding the
operational semantics of a high-level language. Consequently,
low-level debugging information is available only, e.g., variable
values. To tackle these limitations, we propose a DSL on top of
Colored Petri Nets (CPNs) – called Transformation Nets (TNs)
– for the execution and debugging of model transformations.
By integrating all artifacts of a transformation, i.e., metamodel
elements, model elements, and transformation logic, a runtime
model for model transformations is provided, making the afore
hidden operational semantics explicit. Based on this runtime
model we present various means for debugging by means of
an example showing how a QVT-Relations (QVT-R) specification
may be debugged using TNs.

I. INTRODUCTION

Model-Driven Engineering (MDE) [1] proposes an active
use of models to conduct the different phases of software
development, whereby models are abstractions of systems
and/or their environments [2]. This leads to a shift from the
“everything is an object” paradigm to the “everything is a
model” paradigm [3]. In the same way as programs have to
follow certain syntactic constraints – commonly described by
grammars – models also have to follow syntactic constraints
given by so-called metamodels (MMs), which define their
abstract syntax [4]. In MDE there is a recurring need to
transform models between different languages and abstraction
levels, e.g., to migrate between language versions, to trans-
late models into semantic domains for analysis, to generate
platform-dependent from platform-independent models, or to
refine models. Model transformations always follow a cer-
tain pattern [2], as depicted in Fig. 1. In this context, the
transformation definition takes place between the respective
MMs using a dedicated transformation language, describing
how source models should be transformed into target models.
In this paper the focus is on declarative, rule-based transfor-
mation languages which only require the definition of what
needs to be transformed by relating certain source and target
MM elements. The actual specification is then executed in a
transparent way by a dedicated transformation engine.

Transformation engines, however, operate on a rather low
level of abstraction, appearing as black-box to the transfor-

This work has been funded by the FFG Bridge program under grant 832160
and by the FWF under grant P21374-N13.

Source TargetSource
Metamodel

conforms to
executes

conforms to

Transformation Definition
Target

Metamodel

Source
Model

New Target
Model

co o s to

input output
Transformation

Engine

conforms to

Fig. 1. Model Transformation Pattern

mation designer, thereby hiding the operational semantics.
As a consequence, debugging is limited to the information
provided by the transformation engines. As discussed in [5],
a model transformation debugger may not make use of com-
mon programming language debuggers “due to the semantic
differences in abstraction between the artifacts of code and
models”. Consequently, a model transformation debugger must
understand the model representation. Thus, the execution of a
model transformation should be represented as a model, i.e.,
the execution should be an instance of a runtime model.

To tackle the limitations of current approaches and their un-
derlying execution engines, we propose Transformation Nets
(TNs), a domain-specific language (DSL) on top of Colored
Petri Nets (CPNs) [6] as a runtime model for declarative
model transformation languages to reveal the internals of
the execution engine. First, the visual nature of TNs allows
for visual debugging, e.g., to detect code-smells. Second, an
explicit, model-based representation of the execution state
allows to incorporate more sophisticated debugging facilities
known from traditional software engineering, e.g., simulation
or tracking the origin of a failure by means of reasoning
backwards in time and slicing [7]. Finally, the formal prop-
erties provided by the underlying CPNs may be applied for
debugging and verifying the transformation specification.

The rest of the paper is structured as follows. Section II
gives an overview of the TN formalism by means of a
running example. Section III to Section VI present means
for debugging in TNs, ranging from visual debugging, i.e.,
examination of code-smells, to property-based debugging, i.e.,
making use of formal CPN properties for debugging. Lessons
learned are presented in Section VIII. A comparison to related
work is conducted in Section IX before Section X concludes.

II. TRANSFORMATION NETS IN A NUTSHELL

This section first introduces the design principles of the
TN formalism. Second, we introduce a running example (cf.

TargetSource
transformation ClassToRel
(class:Class, rel:Relational){
top relation PackageToSchemaPackageToSchema{
checkonly domain class

Transformation Definition

g
MetamodelMetamodel

translated into

checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

QVT Relations TGGs

TargetTarget
conforms Transformation NetTransformation Net

T itiT iti

Transformation
Logic

conforms
SourceSource

PlacesPlaces
TransitionsTransitions

Source
Model

TokensTokens

derive
TransitionsTransitions

New Target
Modelinstantiate

Fig. 2. Transformation Net Big Picture

Fig. 3) which is finally used to present TNs in more detail.

A. Basic Design Principles

TNs provide a runtime model for model-to-model trans-
formations and form a DSL on top of Colored Petri Nets
(CPNs) [6]. The conceptual architecture of TNs is presented
in Fig. 2, showing the embedding of TNs into the model
transformation pattern shown in Fig. 1. As may be seen,
MM elements are represented in terms of places and model
elements in terms of tokens residing in these places. Finally,
for the transformation logic, which may have been specified in
a dedicated transformation language, e.g., in terms of QVT-
R [8] or TGGs [9], a system of transitions is derived. By
the firing of transitions, tokens representing source model
elements are translated into tokens representing target model
elements. TNs itself are specified by means of a MM (cf.
Fig. 4). The TN MM is used to specify a translation to standard
CPNs in order to make use of existing execution engines and
the formal properties, as discussed in detail in [10].

B. Running Example

To exemplify the TN formalism, we introduce a concrete
transformation scenario that is used throughout the paper.
In particular, we present a small extract of the well-known
Class2Relational transformation (cf. Fig. 3) [11], which has
been chosen due to its popularity. The main requirements
are to translate instances of the class Package to equally

named instances of the class Schema and instances of the
class Class, which are persistent, to equally named
instances of the class Table. Furthermore, it is demanded
that the containment hierarchy remains.

To realize these requirements, a transformation is specified
using the OMG standard transformation language QVT-R [8]
(cf. Fig. 3). The specification makes use of two relations.
The first relation PackageToSchema matches for Package
instances in the source model (cf. checkonly domain in line
6 in Fig. 3) and produces equally named Schema instances
(cf. enforce domain in line 9 in Fig. 3). The second relation
ClassToTable follows the same design as the relation
PackageToSchema but matches for classes, which are
persistent, only (cf. condition isPersistent=true in line
18). Additionally, to maintain the containment hierarchy, the
relation also matches for the according Package instance in
order to contain the Table instance in the Schema instance
generated for the Package instance. Finally, since we do
not want Schemas containing equally named Tables, an
according key is defined, which prohibits multiple creation of
equally named Tables.

However, when executing the transformation specification
several undesired target model elements result (cf. bold bor-
dered elements in target model in Fig. 3), e.g., the transfor-
mation produces four Schema instances although the source
model exhibits only two Packages and only one table is
produced. Consequently, means for spotting the errors, i.e.,
debugging, are needed.

C. Transformation Nets by Example

In order to debug the above transformation, the QVT-R
specification, the source and target MMs as well as the source
model are transformed to an according TN, following the
rules introduced above (cf. Fig. 5). For each MM element
(i.e., Classes, Attributes or References, cf. Fig. 5)
places have been derived. Second, the source model elements
have been represented in terms of tokens. In particular, for
every object a unicolored token is derived which is put into
the corresponding place, i.e., the Package p2 is represented

M d lEl t

Class Metamodel Relational MetamodelQVT Relations Specification
1 transformation uml2rdbms(cl:Class, r:Relational) {
2 key Relational::Table {name};

13 ‐‐map each persistent class to a table
14 top relation ClassToTable {

ModelElement
name : String

SchemaElement
name : String

3 ‐‐map each package to a schema
4 top relation PackageToSchema {
5 pn : String;
6 checkonly domain cl p : Class::Package {

15 cn : String;
16 checkonly domain cl c : Class::Class {
17 namespace = p : Class::Package { },
18 isPersistent = true,

Package Class
isPersistent : Bool

0..*namespace
Schema Table

0 *schema

6 checkonly domain cl p : Class::Package {
7 name = pn
8 };
9 enforce domain r s : Relational::Schema {
10 name = pn

19 name = cn
20 };
21 enforce domain r t : Relational::Table {
22 schema = s : Relational::Schema {},

Exemplary Class Diagram (Source Model) Resulting Relational Schema(Target Model)

classes
tables

0..*schema10 name = pn
11 };
12 }

22 schema s : Relational::Schema {},
23 name = cn
24 }; } }

c1 : Class
isPersistent = true
name = ‘Person‘

classesp1 : Package

name = ‘University‘ namespace schema

s1 : Schema

name = ‘University‘

s3 : Schema tables t1 : Table

name = ‘Person‘

c2 : Class
isPersistent = true
name = ‘Person‘

classes

namespace

p2 : Package

name = ‘Company‘
s2 : Schema

name = ‘Company‘

s4 : Schema t2 : Table

name = ‘Person‘schema

tables

Fig. 3. Running Example

TransformationNet
f i

0..*target

Net

name : String
TransformationSpec

transformation

1..1sourceMM targetMM

1..1 transitions
1..*

TNPlace
name : StringToken

TransitionPattern queryPatterns
1..*productionPatterns

1..*

TPArc arcs

1..1
source

target 1..1

1..1

target
1..1

0..*inArcs

1..1

SMMTMM
sourceMM

0..*

0..*

places

0..*places

0..*

Reference

Token

Object Link

tokens

superclasses

opposite
0..1

name : String
condition : String
key[]: List<Pattern>

hi tE t i

PTArc target 1..1

inArc0..10..*

arcs source 1..1transitioncbe : Boolean

TracePlace

place

1..1
Class

source

1..1

j

oid : String soid : String
toid : String 0..*

SubisAbstract : bool

ordered : bool
containment : bool
upperBound : Int
l B d I

0..*

ObjectPattern

oidVar : String

LinkPattern

soidVar: String

History

precondition[]:Int

histEntries0..*
TracePlace

Attribute

target

attributes
0..*

Value

oid : String
valueId : String

Sub
classes

lowerBound : Int

type: DataType

1..1
oidVar : String
negated : Boolean

ValuePattern

soidVar: String
toidVar : String
negated : Boolean

postcondition[]:String
hId: IntTrace

soid : String[]
toid : String TracePatternvalueId : String

value : String
type: DataTypeclass ValuePattern

oidVar : String
valueIdVar : String
distinct : bool

d B l

toid : String TracePattern

soidVar[] : String
toidVar : String

negated : Boolean

Fig. 4. Transformation Net Metamodel

by the white token in the place labeled Package. Values are
represented by tokens consisting of two colors, whereby the
upper color represents the color of the owning object, whereas
the lower color encodes the actual attribute value (cf., e.g.,
tokens in place ModelElement.name). Links are again
represented by two-colored tokens, whereby the outer color
of the token represents the link’s source object and the inner
color its target object (cf,. e.g., tokens in place classes).

The actual transformation logic is represented in terms
of transitions in TNs, which is derived from the specified
transformation logic. In our example, one may see that for
every QVT-R relation a transition results. Transitions consist
of a left-hand side (LHS), which states the precondition
that needs to be fulfilled in order to fire a transition,
i.e., according tokens need to be available. The right-
hand side (RHS) states the postcondition of a transition,
i.e., the tokens that should be produced after firing.
These conditions are expressed by means of so-called
QueryPatterns (LHS) or ProductionPatterns
(RHS). Thereby, again different types of patterns are provided
which query/produce different types of tokens, i.e., one
may distinguish ObjectPatterns, ValuePatterns,
and LinkPatterns. Additionally, TracePatterns are
employed to make the trace information of one transition

Transformation NetSource MM Target MM
ModelElement

name String

SchemaElement

S i

<<cbe>>
PackageTo
Schema

g

name : String name : String
p1
Univer
sity

c1
Person

p2
Company

c2
Person

pn

p

Package

1

Schema

<<cbe>>
ClassTo
Table

p2

TableClass

p1
name
space

schema

c

pp2

isPersistent: Bool

c1 c2

c1 c2 i P i t t

cn

classes tables

c1
true

c2
true

isPersistent
@class.isPersistent=true

key={c,cn}

Fig. 5. TNs by Example: QVT-Relations translated to TNs

available to dependent ones. Consequently, the elements
of the checkonly domain of a QVT-R specification
are represented in terms of QueryPatterns and those
of the enforce domain are represented by according
ProductionPatterns. In order to ensure that a target
object, e.g., a Schema, is created only once, a QVT-R
transformation engine examines the trace information and
checks if the according target element has been created
before, i.e., a check before enforce semantics is employed.
QVT-R furthermore allows defining equality of objects by
means of keys. In order to represent this behavior accordingly
in TNs, every transition is marked with a check before
enforce flag (cf. stereotypes on transitions in Fig. 5), i.e.,
target objects and their depending values or links of a
transition are only created if they did not exist before.
Additionally, a key may be specified for transitions by stating
the according variables of the production patterns, e.g., to
represent the key of our example in Fig. 3, the transition
that produces Table instances exhibits a key containing the
object itself (represented by the variable c) and it’s attribute
name (represented by the variable cn), shown in Fig. 5.

As demonstrated by the previous example a model trans-
formation might be represented in terms of a model, i.e., the
execution is an instance of a runtime model, which conforms
to the TN metamodel depicted in Fig. 4.

III. CODE-SMELLS IN MODEL TRANSFORMATIONS

The integrated view on model transformations of TNs
allows to detect potential failures, i.e., the static structure
might already indicate failures, so-called code-smells, which
are discussed in the following.

Coherence Between Rules. Typically, rules in transforma-
tion languages interact with each other, i.e., the result produced
by one rule allows other rules to transform their corresponding
elements. In this respect, rules use trace information or explicit
calls to synchronize each other. If several unrelated rules
are specified, then they work independent of each other,
potentially resulting in unconnected parts in the output model,
which is normally not intended. This is especially true in the

context of Ecore-based1 models, which demand a tree structure
of the model elements. Consequently, at least a connection to
the rule transforming the root container must exist.

Detection in TNs: In Transformation Nets,
transitions interoperate via trace places and according
TraceQuery/ProductionPatterns (cf. Fig. 9).
Therefore, if transitions are not connected via according trace
places, independent parts of the target model result. As can
be seen in Fig. 5, the transitions PackageToSchema and
ClassToTable are not connected to each other which is
not desired since Table instances should be contained in
their according Schema (cf. target model in Fig. 3).

Invalid Target Model. The generated target model of a
transformation must again conform to its according MM. For
example, dangling references must not occur, i.e., links have to
point to a valid target object. Dangling references may occur
in transformation languages if objects are deleted which are
still referred by some links.

Detection in TNs: Invalid configurations of a target model
may be detected by inspecting the tokens of the generated
target model, i.e., the colors of links and the object color of
values has to be present in the according class places. In order
to ensure such well-formedness constraints, OCL invariants
are added to the target places (cf. invariants HasSource and
HasTarget in Listing 1). For example, a constraint is put
onto reference places which checks if the according source
and target objects exist. Additionally, boundedness constraints
are validated, i.e., if the number of tokens that originate from
a certain link token (outer color) does not exceed the specified
upper-bound of the reference.

MM Coverage. If no rule matches a certain metamodel
element, then this element will not participate in the transfor-
mation process and the according instances will not result in
any target instances, which leads to information loss during
the transformation. As on the source side, also on the target
side metamodel elements may not be targeted by a single rule
and therefore no according instances may be created.

Detection in TNs: If no source arc originates from a certain
source place, this MM element will not be considered in the
transformation. The same is true on the target side, i.e., if
no arc targets a certain place representing an element of the
target MM, instances of this MM element may not be created
by the transformation. Both code-smells may automatically
be detected by means of OCL invariants in TNs leading to
according warnings (cf. invariant SourceMMCoverage in
Listing 1 showing the invariant for the source MM).

Redundant Specification. If several rules match a certain
MM element, then this may lead to redundant elements on
the target side, unless according conditions match for disjoint
subsets. Again, the same applies to the target MM, i.e., if
elements of the target MM are targeted by several rules, it
may happen that these parts will be produced several times (if
no check before enforce semantics is employed).

Detection in TNs: On the source side, this code-smell may

1Ecore is the Eclipse realization of the EMOF standard

be detected if several arcs originate from one source place.
On the target side, this may be detected if more than one
arc targets a certain place. Again this may be automati-
cally checked by employing OCL constraints (cf. invariant
SourceMMRedundancy in Listing 1), leading to according
warnings in TNs. Furthermore, if the TN is already executed
and if a target place contains duplicates, i.e., same-colored
tokens, this indicates redundantly specified parts as well.

Listing 1. OCL Invariants to detect Code-Smells
1 c o n t e x t R e f e r e n c e inv HasSource :
2 s e l f . sou rce−>t okens−>c o l l e c t (o i d)−>
3 i n c l u d e s A l l (s e l f . t okens−>c o l l e c t (s o i d))
4 −−
5 c o n t e x t R e f e r e n c e inv HasTarge t :
6 s e l f . t a r g e t−>t okens−>c o l l e c t (o i d)−>
7 i n c l u d e s A l l (s e l f . t okens−>c o l l e c t (t o i d))
8 −−
9 c o n t e x t SMM inv SourceMMCoverage :

10 s e l f . p l a c e s−>f o r A l l (p | p . a r c s−>no t I sEmpty ())
11 −−
12 c o n t e x t SMM inv SourceMMRedundancy :
13 s e l f . p l a c e s−>f o r A l l (p | p . a r c s−>s i z e () > 1)

In summary, the static structure of TNs may already indicate
certain failures in the transformation specification, providing
a potential starting point for debugging.

IV. SIMULATION-BASED DEBUGGING

Although code-smells may point to failures, failures may
often only be detected by means of live-debugging, i.e., sim-
ulation of the execution. The simulation of the transformation
specification allows a transformation designer to get an insight
into the specification, i.e., the hidden operational semantics is
made explicit, in order to foster debugging. In this respect, TNs
provide various means to support the transformation designer
to effectively find the origin of a failure being (i) means for
selecting a certain part of the transformation code, (ii) means
for inspecting the current execution state and, finally, (iii)
means for investigating the dynamic behavior.

A. Selection
TNs allow (i) to select an enabled transition and according

bindings, i.e., debugging of the matching process, and (ii) to
set breakpoints on different elements (i.e., transitions, places,
tokens), to provide flexible means to select a certain starting
point for debugging.

Debugging of the Matching Process. Since transformation
engines may select applicable rules non-deterministically, the
debugging environment needs to accordingly visualize the
rules that are currently applicable. Since TNs build a DSL
on top of CPNs, which support non-determinism inherently,
the enabled transitions have to be made explicit, e.g., by
highlighting enabled transitions (cf. transitions with a bold
border in Fig. 6), indicating that (only) these transitions may
be fired. In the example in Fig. 6, both transitions are enabled,
since there are Package instances available that enable the
transition PackageToSchema. Furthermore, the transition
ClassToTable is enabled since also instances of persistent
Classes are available that are contained in a Package.

If a transition is enabled, it may be the case that there
exist several valid bindings, i.e., several combinations of

tokens that satisfy the precondition of a transition. Thus, the
transformation designer should be enabled to select a desired
one. TNs support this scenario by two different mechanisms
being (i) selection of calculated bindings and (ii) user-defined
bindings. Concerning the first mechanism, every enabled tran-
sition may be asked for its currently possible valid bindings,
which are presented to the transformation designer and from
which he is allowed to select one, as can be seen in 1 in
Fig. 6. Concerning the second mechanism, the transformation
designer may drag and drop tokens from source places to
a query pattern of the according transition. The transition
checks, if the specific token is part of a valid binding. If this
is the case, the query pattern is bound to the according token,
restricting the possible valid bindings.

Breakpoints. Whereas in programming languages break-
points are set to the desired line of code, in TNs breakpoints
may be set on (i) transitions, (ii) tokens and (iii) places.
Breakpoints on transitions are closest to those known from
programming languages. Per default, the execution of TNs
stops at this kind of breakpoint every time the according
transition is enabled. Nevertheless, the transformation designer
might change this behavior and may configure the breakpoint
such that it stops execution every time a certain transition is
not enabled. If a breakpoint is attached to a certain token,
execution is stopped, if this token is successfully bound to
a transition, i.e., if it is part of a valid binding (cf. 2 in
Fig. 6). Finally, concerning places, execution is stopped either
if a token is about to be read from a certain source place or
if a token is going to be put into a certain target place.

To further restrict the applicability of breakpoints, condi-
tional breakpoints are provided, i.e., OCL expressions can
be attached to breakpoints. Conditional breakpoints may be
specified at different levels of granularity. Thus, it may not
only be defined that execution should stop, e.g., if a certain
token is streamed into a certain place, i.e., a local condition,
but also if a certain combination of tokens occurs in several
different places, i.e., a global condition. An example for the
first case is shown in 3 in Fig. 6, e.g., the conditional
breakpoint attached to the place Schema will stop execution
only if more than one Schema instance is produced. An
example for the latter case is shown in 4 in Fig. 6 by the

Transformation NetSource MM Target MM1
ModelElement

name String

SchemaElement

S i

<<cbe>>
PackageTo
Schema

g

Bindings:
{p1,(p1,University)}
{p2,(p2,Company)}

1

name : String name : String
p1
Univer
sity

c1
Person

p2
Company

c2
Person

pn

p

Package

1

Schema

<<cbe>>
ClassTo
Table

p2

Breakpoint on Token

2

TableClass

p1
name
space

schema

c

pp2

Schema.allInstances()‐>size() >1

3

isPersistent: Bool

c1 c2

c1 c2 i P i t t

cn

classes tables
Table.allInstances()‐>size() >1 and
S h llI () i () 2 4c1

true
c2
true

isPersistent
@class.isPersistent=true

key={c,cn}

Schema.allInstances()‐>size () >=2 4

Fig. 6. Debugging Support in the Selection Phase

breakpoint attached to the place Table, which stops execution
if the Table place contains more than one element and if
additionally the Schema place contains two or more elements.

B. Inspection

A natural prerequisite for reasoning about the state of
execution is to provide appropriate inspection mechanisms. In
the following it is discussed, how the actual state of execution
and the control flow is represented in TNs.

State inspection. TNs provide an integrated view on the
transformation specification, i.e., not only the transformation
logic itself is represented, but also the involved source and tar-
get MMs as well as their according model elements. Thus, the
actual state of the transformation is explicitly presented to the
transformation designer at any time during the transformation.

Visualization of control flow. On the one hand, the visu-
alization of the control flow is achieved by highlighting the
transitions ready to fire. On the other hand, the history of
transitions (which is hidden per default, but may be made
explicit by the transformation designer – cf. 1 and 2 in
Fig. 7) as well as the trace tokens provide visual information
on which source tokens have been transformed into which
target tokens. In order to make this information even more
explicit, interrelationships between tokens are highlighted on
mouse-over. For example, when moving the mouse over a
source object token, the relationship to according value and
link tokens that are contained by this object as well as already
transformed tokens that originate from the source object token
are highlighted by means of dashed lines.

C. Dynamics.

A transformation designer may investigate the dynamic
semantics of the transformation specification by a stepwise
firing of transitions. Thus, it is possible to follow which source
element is transformed into which target element, i.e., the
operational semantics is made explicit. Combined with the
means for selecting a certain element in the matching phase,
it may easily be figured out, e.g., why a certain element is
not matched by a certain transition. In the example in Fig. 6,
one can see that both transitions may be fired, i.e., they
might be executed in a nondeterministic order. However, since
Class instances should only be transformed if their owning
package has already been transformed, this indicates a missing
interdependence between the transitions.

In summary, TNs support debugging on the model level
rather than on the code level, as typically provided by current
debuggers integrated in model transformation languages, i.e.,
they reuse the debugging features of the underlying transfor-
mation engine, only.

V. QUERY-BASED DEBUGGING

Debugging suffers from the well-known problem that pro-
grams execute forward in time whereas programmers must
reason backwards in time to find the origin of a bug [7].
In this respect, the transformation designer needs to carefully
approach the moment when the actual infection is observable

in the transformation specification. However, this is not neces-
sarily the point, where the infection has been introduced. Thus,
the transformation designer has to restart debugging and try
to find the failure at some earlier point in time of execution.
This is typically cumbersome and therefore means are needed
that allow to reason backwards in time. Thereby, questions
like “where does this target element come from” should be
answered, i.e., query-based debugging should be enabled. The
investigation of dependencies of a concrete program run is
called dynamic slicing [7], i.e., extracting those parts of the
transformation specification that deal with a certain element.

A. Dynamic Slicing by Means of OCL

Since the execution of a transformation is stored as a
model, which conforms to the TN MM, OCL queries may
be employed to realize dynamic slicing in order to enable
backwards debugging in time for model transformations.

When inspecting the generated target model in Fig. 7, at
first sight it remains unclear, why two Schemas p1 and
two Schemas p2 get created and which transition created
the according tokens, since both transitions target the place
Schema. Therefore, a token might be asked for the transi-
tion that created the token by means of the OCL function
getCreator() which is depicted in Listing 2. Thereby, the
function first gets its according place and collects the transition
(cf. line 2). Afterwards, the history of the transitions is checked
whether it contains the history-id (hId) of the according token
in its postconditions.

Listing 2. GetCreator Function
1 c o n t e x t Token : d e f g e t C r e a t o r () : T r a n s i t i o n =
2 s e l f . p l a c e . inArcs−>c o l l e c t (a : TPArc | a . s o u r c e . t r a n s i t i o n)
3 −>s e l e c t (h i s t E n t r i e s)
4 −>c o l l e c t (p o s t c o n d i t i o n)−> i n c l u d e s (s e l f . h Id))

When investigating the first token, which is labeled p2
(cf. Step 1 in Fig. 7), one can see that it exhibits the hId
2. When calling the getCreator() function the transi-
tion PackageToSchema is returned, since the history-id is
contained in the history of the transition. It is now possible
to navigate further backwards in time by, e.g., calling the

function getInputTokens(t), which delivers the tokens
that enabled the transition in accordance to a certain token t
that was produced by this transition. For example it is possible
to get the Package token that enabled the transition and
that produces the target token p2 by selecting the second
token returned by the getInput function (cf. Step 2 in
Fig. 7). Furthermore, if we execute the queries on the second
target token labeled p2 (cf. Step 3 and 4 in Fig. 7) one can
see that we again obtain the same source Package instance
which was matched and transformed twice. In order to correct
the transformation it has to be ensured that the Schema
instance produced by the transition PackageToSchema is
reused in the transition ClassToTable, i.e., the transition
PackageToSchema must produce trace information that
may be queried by the transition ClassToTable.

Listing 3. GetInputTokens Function
1 c o n t e x t T r a n s i t i o n : d e f g e t I n p u t T o k e n s (t : Token) :
2 Sequence{Token} = −−f o r o b j e c t t o k e n s o n l y
3 s e l f−>c o l l e c t (q u e r y P a t t e r n s) . i nArc . s o u r c e . t o k e n s ()
4 −>f l a t t e n ()−> s e l e c t (x : Token |
5 (s e l f−>c o l l e c t (h i s t E n t r i e s)−> f l a t t e n ()
6 −>s e l e c t (h : H i s t o r y | h . p o s t c o n d i t i o n−>
7 i n c l u d e s (t . o i d)) . p r e c o n d i t i o n)−>
8 i n c l u d e s A l l (x . o i d))−>asSequence ()

In summary, TNs provide means for backwards in time
debugging by employing predefined OCL functions. Addition-
ally, custom OCL functions may be used, since the execution
of a model transformation is again represented as a model,
i.e., the runtime model may be queried by arbitrary OCL
expressions, which allows for flexible means of query-based
backwards in time debugging.

VI. PROPERTY-BASED DEBUGGING

Since TNs form a DSL on top of CPNs the formal properties
thereof may be applied for debugging, allowing for property-
based debugging. For this, the state space of the underlying
CPN has to be constructed to calculate diverse behavioral
properties. The basic idea of state spaces is to calculate
all reachable states (markings) and state changes (occurring
binding elements) of the CPN. In the resulting directed graph,

Transformation NetSource MM Target MM
Hi 1

ModelElement

name String

SchemaElement

S i

<<cbe>>
PackageTo
Schema

g

Query
Patterns

Production
Patterns

p pn p pn id

History 1
1

getInputTokens
Step2Step2

name : String name : String
p1
Univer
sity

c1
Person

p2
Company

c2
Person

pn

p

p1
Univer
sity

p2
Company

c1
Person

p1 University p1 University 1

p2 Company p2 Company 2

getCreator()

g p
(p2)‐>at(2)

Step1Step1

Package

1

Schema

<<cbe>>
ClassTo
Table

p2

2 Tokens
{oid=‘p1’,hId=1}
{oid=‘p2’,hId=2}
{oid=‘p1’,hId=3}
{oid=‘p2’ hId=4}

getInputTokens(p2)
‐>at(1)

getCreator()
Step4

TableClass

p1
name
space

schema

c

pp2 p2 p2p1p1

Query
Patterns

Production
Patterns

History 2
{oid= p2 ,hId=4}

getCreator()

isPersistent: Bool

c1 c2

c1 c2 i P i t t

cn

classes tables

c1 p c cn p c cn id

p1 c1 Person p1 c1 Person 3

p2 c2 Person p2 ‐ ‐ 4

Step3

c1
true

c2
true

isPersistent
@class.isPersistent=true

key={c,cn}

Fig. 7. Backwards in Time Reasoning in Transformation Nets

Statistics
‐‐‐

Home Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

State Space
Nodes: 12
Arcs: 20
Secs: 0

Boundedness Properties

Home Markings
none

Liveness Properties

2

Boundedness Properties
‐‐
Best Integer Bounds

Upper Lower
Schema 4 0

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
Dead Markings
[11,12]

Dead Transition Instances
None

1

4
Table 1 0

....

Best Upper Multi‐set Bounds
Schema 2`{object=1,name="p1"}++

Live Transition Instances
None

Fairness Properties
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

3

{ j , p }
2`{object=2,name="p2"}

Table 1`{object=5,name=“c1"}
....

No infinite occurrence
sequences.

(a) State Space (b) Behavioral Properties

Fig. 8. State Space and Behavioral Properties of Running Example

nodes correspond to the set of reachable markings and the
arcs correspond to occurring binding elements. Consequently,
a state space depends on a specific initial marking, i.e., the
according source model in TNs (cf. Fig. 8(a), showing the state
space of the running example). State spaces provide powerful
means to analyze the specified CPN and may be created fully
automatically. As might be imagined, the main drawback of
calculating the state space is the so-called state space explosion
problem [12], i.e., the size of the state space gets too large to be
stored in memory. This is mainly due to the non-deterministic
selection of possible bindings of a transition and the non-
deterministic selection of enabled transitions. Thus, means for
state-space reduction are needed to employ these techniques,
e.g., on-the-fly verification, or symmetry method [6].

The state space is used to calculate general properties on
model transformations, e.g, termination or confluence. In the
following, it is shown how such properties (cf. [13] for an
overview) may be used to enable property-based debugging
of model transformations (cf. Fig. 8(b)).

Termination and Confluence Verification using Dead
and Home Markings. In a model-to-model transformation
scenario (which is the focus of this paper), a model transfor-
mation is required to terminate. Thus, the state space needs
to contain at least one Dead Marking [13], which is a state
without any successors, i.e., ∃M such that M0

σ⇒ M and
enabled(M) = ∅, meaning that after a certain firing sequence,
starting from the initial marking M0, a marking M is reached,
where no bindings are enabled any more.

Nevertheless, in order to formally verify termination, it
has to be ensured that a dead marking is always reachable.
For this, home properties are provided in CPNs, whereby a
Home Marking MHome is a marking, which may be reached
from any other reachable marking, i.e., ∀M |M σ⇒ MHome

[13]. As stated in [6], this means that “it is impossible to
have an occurrence sequence starting from M0 which may
not be extended to reach MHome”. Consequently, if the state
space contains a single Dead Marking which is equal to a
single Home Marking, i.e., both states offer the same id,
it is ensured that the CPN (and thus the according TN)
always reaches a dead marking leading to a confluent CPN,
i.e., there exists a unique terminal marking, that may always
be reached. Formally this is denoted as if ∀M,M ′M0

σ⇒
M ∧ enabled(M) = ∅ ∧ M0

σ⇒ M ′ ∧ enabled(M ′) = ∅

then M = M ′.
Since the calculated properties depend on the actual source

model, in general the transformation would have to be tested
with all possible input elements, which is not feasible. Thus,
the question arises, in which situations a non-confluent be-
havior may occur at all, i.e., when does a transformation
contain more than one home or dead state. In general, non-
confluence in model transformations may occur if two rules
are non-parallel independent [14]. The same is true for CPNs
if the specified net is not persistent. A CPN is said to be
persistent if “for any two enabled transitions, the firing of one
transition will not disable the other one” [13], which is equal
to the definition of parallel-independence. Consequently, this
property has to be ensured for TNs as well.

Considering our running example, it can be seen that the
state space exhibits two dead states and no home marking (cf.
1 and 2 in Fig. 8(b)). This is due to the fact that it can not be
ensured whether Class c1 is created (dead state 11) or c2
(dead state 12), due to the ambiguous key defined for Table
instances.

Model Comparison using Reachability and Boundedness
Properties. To achieve a correct transformation result, an
equal Home Marking and Dead Marking is a necessary, but
not a sufficient condition, as it may not be ensured that this
marking represents the desired target model (which has to be
provided by the transformation designer in terms of an Ecore
model). By exploring the constructed state space, it is possible
to detect if a certain marking, i.e., the target marking derived
from the desired target model, is reachable with the specified
transformation logic. If this is the case, and if this marking
is equal to both, Home Marking and Dead Marking, it is
ensured that the desired target model may be created with
the transformation logic.

If the desired target model is not reachable, a possible step
to debug the transformation specification is to compare the
target model generated by the transformation to an expected
target model. To identify wrong or missing target elements
in terms of tokens automatically, Boundedness properties [13]
(Integer Bounds and Multiset Bounds) may be applied (cf. 3
Fig. 8(b)). Upper integer bounds state how many tokens reside
in a certain place at most, i.e., in a first step only the number of
tokens may be compared. Since no tokens are consumed from
a place in TNs, the number of tokens in a place representing
a target MM element has to be equal to the number of tokens
derived from a desired target model. On the one hand, if there
are too few tokens, the according place is highlighted to give
the transformation designer a hint for debugging. On the other
hand, if there are too many tokens, the according tokens may
be identified by using the Multiset Bounds, which contain
the respective marking. These tokens are then highlighted in
the according TN and the transformation designer might then
make use of query based debugging mechanisms to actually
discover the origin of the failure. In our example, we would
thus highlight the tokens p1 and p2 in the place Schema
since only two tokens should be available. Additionally, the
places Table, schema and classes would be highlighted

since they miss tokens.
Transition Error Detection using Liveness Properties. In

TNs the situation might occur that a certain transition specifies
a condition that is never fulfilled during the whole transforma-
tion process, i.e., the transition never fires. This situation may
be detected by means of so called Dead Transition Instances
or L0-Liveness [13]. Dead transition instances may be found in
the state space report, whereby none means that no transition
exists, which has never fired (cf. 4 in Fig. 8(b)). If a transition
did not fire, it indicates that the source model did not enable
the transition and therefore, either the specified test model
did not consider a certain scenario, the specified transition is
incorrect, e.g., a too restrictive condition, or even the source
model is incorrect. In case of dead transition instances, the
according TN transition gets highlighted in order to set the
focus for debugging.

VII. FIXING FAILURES

The last phase in the debugging process is to actually correct
the defect. In TNs, the transformation designer is allowed to (i)
alter the according model, i.e., tokens may be added, edited or
removed, and (ii) to change the specified transformation logic.

A. Adapting the Model

Since in TNs the model is explicitly represented by means
of tokens, it is possible to add, edit or delete certain tokens
in order to fix a defect during debugging. Adding tokens to
places is allowed only if the according place is either a place
representing a source MM element or a trace place. Adding
tokens to trace places may be useful in order to continue
debugging, if the transformation terminated unexpectedly. By
this, questions like “would this transition fire, if there would
be an according trace token” may easily be answered. Editing
or deleting tokens is more complex than adding tokens, since
those tokens might already have been matched by transitions.
Thus, it may be the case that a transition might not have fired,
if the token was not present or exhibited some different value.
If a token is changed or deleted, the according history entries
of the transitions have to be deleted from the transition’s
history in order to allow to re-execute transitions. Addition-
ally, also the produced tokens and the history of dependent
transitions have to be updated. Finally, changes or deletions
might also lead to dependent changes, i.e., if an object token
is deleted, all dependent value and link tokens are deleted as
well, to maintain a valid model.

Finally, a remaining question is, if the changes in the
model should be local to the debugging environment, i.e., the
changes in the source model should not be made persistent,
or if the changes during debugging should be made persistent.
On the one hand, if the changes are local to the debugging
environment, the transformation designer is allowed to “play
around” with certain model configurations without changing
the test input model. On the other hand, changes in the
debugging environment probably have to be repeated in the
test input model, if errors have been detected in the model.
Therefore, in TNs the changes are local to the debugging

environment per default, but the transformation designer may
explicitly commit the changes in order to persist them.

B. Adapting the Transformation Logic

The transformation logic represented in TNs may be
changed as well, i.e., it is allowed to add or edit existing
transitions or trace places during debugging. Furthermore, it
is allowed to edit existing transitions, e.g., by adding further
query tokens or deleting a production token. In any of these
cases, the history of the according transition as well as those
of dependent transitions have to be updated, in order to
allow to re-evaluate the according parts of the transformation
specification. Nevertheless, since TNs provide a runtime model
for declarative model-to-model transformation languages, i.e.,
it is possible to represent the actual transformation logic in
terms of TN concepts, the back propagation of changes in
the transformation logic to the actual transformation languages
represents a major challenge. Currently, the back propagation
requires the specification of an explicit transformation, i.e.,
not only a transformation from the transformation language to
TNs is required, but also a transformation from TN concepts
to the concepts of a specific transformation language, e.g., a
transformation from TNs to QVT-R.

As discussed before, there are two failures in the running
example. First, the transitions are independent from each
other resulting in too many Schema instances and second
the specified key for Table instances is ambiguous. To
fix the first failure, a trace place is introduced (cf. 1 in
Fig. 9). Additionally, the transition PackageToSchema adds
a TracePattern, stating which Package instances have
been translated to which Schema instances. This trace infor-
mation is then queried by a TracePattern in the transi-
tion ClassToTable. In this respect, the already produced
Schema instance is reused to set the references. Consequently,
the resulting target model consists of two Schema instances
only, which contain the Table instances. The changes in
TNs are represented in QVT-R by adding an according when-
clause in the relation ClassToTable. Thus, this relation
is executed only if it is also possible to execute the relation
PackageToSchema. Concerning the second failure, the ref-
erence to the Schema needs to be added to the key to ensure
uniqueness (cf. 2 in Fig. 9).

VIII. LESSONS LEARNED

This section presents lessons learned and thereby discusses
key features as well as current limitations of the TN approach.

Visual Syntax and Live Programming Fosters Debug-
ging. TNs provide a visual formalism for defining model
transformations, which is especially favorable for debugging
purposes. This is not least since the flow of model elements
undergoing certain transformations can be directly followed
by observing the flow of tokens, whereby undesired results
can be detected easily. Another characteristic of TNs that
fosters debuggability, is live programming, i.e., some piece of
transformation logic can be executed and tested immediately
after definition without any further compilation step.

Transformation NetSource MM Target MMtransformation uml2rdbms(cl:Class, r:Relational) {
key Relational::Table {schema name}; 2 ModelElement

name : String

SchemaElement

name : String

<<cbe>>
PackageTo
Schema

key Relational::Table {schema,name};
‐‐map each package to a schema
top relation PackageToSchema {
pn : String;
h k l d i l Cl P k {

2

g
p1
Univer
sity

c1
Person

p2
Company

c2
Person

pn

p

checkonly domain cl p : Class::Package {
name = pn
};
enforce domain r s : Relational::Schema {

p1
Univer
sity

c1
Person

p2
Company

c2
Person

<<trace>>

Package

p1

Schema

h<<cbe>>
p2

name = pn
};
}
‐‐map each persistent class to a table p2p1

p2p1
1 <<trace>>

p1 p2

TableClass

name
space

schema<<cbe>>
ClassTo
Table

p p
top relation ClassToTable {
cn : String;
checkonly domain cl c : Class::Class {
namespace = p : Class::Package { }, c1 c2

p

<<trace>>

isPersistent: Bool

c1 c2

c1
true

c2
true c

p

classes tables

namespace p : Class::Package { },
isPersistent = true,
name = cn
};
enforce domain r t : Relational::Table {

c1 c2s

true true

cn

enforce domain r t : Relational::Table {
schema = s : Relational::Schema {},
name = cn
};
h { P k T S h () }

isPersistent
@class.isPersistent=true

key={c,cn,p}

l

when{ PackageToSchema(p,s);}
}
};

1
2

T f i NQVT Relations Transformation Net

Fig. 9. Bug Fixing in Transformation Nets

State Space Explosion limits Model Size. A known
problem of formal verification by Petri Nets is that the state
space might become very large. Currently, the full state space
is constructed in our prototype to calculate properties leading
to memory and performance problems for large source models
and transformation specifications. A detailed comparison of
different reduction mechanisms and their usefulness in TNs is
required in order to identify those algorithms that work best
or how existing approaches might be adapted in order to fit to
the domain of model transformations.

Concurrency in Petri Nets Allows Parallel Execution.
As Petri Nets in general are especially suitable to specify
concurrent operations, parallel execution of transformation
logic is possible, thereby increasing efficiency of the trans-
formation execution. In this respect, independent parts of a
transformation could be executed in parallel, making TNs
suitable as efficient execution engine. Thereby, the properties
Home State and Dead Markings can ensure confluence, even
in case of parallel execution.

IX. RELATED WORK

Related work regarding debugging support of transforma-
tion languages and approaches for verifying properties of
model transformations are presented in the following.

Debugging Support of Transformation Languages. In
general, there is little debugging support for transformation
languages. Most often only low-level information through the
execution engine is provided, but traceability according to
the higher-level correspondence specifications is missing. For
example, in the Fujaba environment, a plugin called MoTE
[15] compiles TGG rules [16] into Fujaba story diagrams that
are implemented in Java, which obstructs a direct debugging
on the level of TGG rules. In the approach proposed by
Geiger [17], the generated source code is annotated accord-
ingly to allow the visualization of debugging information in

the generated story diagrams, but not on the TGG level. In
addition to that, Fujaba supports visualization of how the
graph evolves during transformation, and allows interactive
application of transformation rules. Approaches like VIATRA
[18] produce debug reports that trace an execution, only, but
do not provide interactive debugging facilities. Although the
ATL debugger [19] allows the step-wise execution of ATL
byte-code, only low-level debugging information is provided,
e.g., variable values. This limited view hinders observing the
execution of the transformation, e.g., the coherence between
rules. SmartQVT and TefKat [20] allow for similar debugging
functionality.

Hibberd et al. [21] present forensic debugging techniques
for model transformations by utilizing the trace information
of model transformation executions for determining the rela-
tionships between source elements, target elements, and the
involved transformation logic. With the help of such trace
information, it is possible to answer debugging questions
implemented as queries which are important for localizing
bugs. In addition, they present a technique based on program
slicing for further narrowing the area where a bug might be
located. The work of Hibberd et al. is orthogonal to our
approach, because we are using live debugging techniques
instead of forensic mechanisms. However, our approach allows
to answer debugging questions based on the visualization of
the path a source token has taken to become a target token.

Summarizing, what sets TNs apart from these approaches
is that all debugging activities are carried out on a single
integrated formalism, without the need to deal with several
different views. Furthermore, our approach is unique in al-
lowing interactive execution not only by choosing rules or by
manipulating the state directly, but also by allowing to modify
the structure of the TN itself. This ability for live-programming
enables an additional benefit for debugging and development:

one can correct errors (e.g., stuck tokens) in TNs right away
without needing to recompile and restart the debug cycle.

Properties of Model Transformations. Current transfor-
mation languages provide only limited support to debug trans-
formation specifications by means of properties. However,
several approaches exist that translate the specification to
an external formalism in order to verify certain properties.
In the area of graph transformations, some work has been
conducted that uses Petri Nets to check properties of graph
production rules. Thereby, the approach proposed in [22]
translates individual graph rules into a Place/Transition Net
to check for its termination. Another approach is described
in [23], where the operational semantics of a visual language
in the domain of production systems is described with graph
transformations. The production system models as well as
the graph transformations are transformed into Petri Nets
in order to make use of analysis techniques for checking
properties of the production system models. De Lara and
Guerra [24] proposes to translate QVT-R into CPNs – on the
one hand to provide a formal semantics for QVT-R and on
the other hand to analyze QVT-R specifications – pursuing
similar ideas as followed in our previous work [25], [26].
Nevertheless, these approaches are using Petri Nets as a back-
end for analyzing properties of transformations only, whereas
we are using a DSL on top of CPNs as a front-end for model
transformations, thereby fostering debuggability. Besides using
Petri Nets for analysis, researchers apply OCL (e.g., [27]) or
formal languages like Maude [28] for analysis.

X. CONCLUSION AND FUTURE WORK

In this paper we presented several means for debugging
model transformation based on the TN formalism, being a
DSL on top of CPNs. In order to find the origin of a
failure, means for live-debugging (support in the matching
phase, simulation, breakpoints) as well as backwards-in-time
debugging by means of OCL queries on the TN runtime
model have been presented. Finally, it was discussed how CPN
properties may be applied for debugging.

The TN formalism provides a runtime model for declara-
tive model-to-model transformation languages. However, since
many other scenarios are possible as well, we are investigating
how endogenous transformations may be incorporated into the
TN formalism and to which respect the TN formalism is suit-
able to debug imperative transformation languages. Thereby,
we also plan to make the TN runtime model transparent to the
user, i.e., the debugging features should be integrated into the
according transformation languages. Additionally, we plan to
focus on state space reduction mechanisms, e.g. by using the
temporal logic LTL.

REFERENCES

[1] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven Engineer-
ing,” Computer, vol. 39, February 2006.

[2] K. Czarnecki and S. Helsen, “Feature-based Survey of Model Transfor-
mation Approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645,
2006.

[3] J. Bézivin, “On the Unification Power of Models,” Software and System
Modeling, vol. 4, no. 2, p. 31, 2005.

[4] T. Kühne, “Matters of (meta-)modeling,” Software and System Modeling,
vol. 5, no. 4, pp. 369–385, 2006.

[5] Y. Lin, J. Zhang, and J. Gray, “A Testing Framework for Model
Transformations,” in Proc. of Model-Driven Software Development -
Research and Practice in Software Engineering, 2005, pp. 219–236.

[6] K. Jensen and L. M. Kristensen, Coloured Petri Nets - Modeling and
Validation of Concurrent Systems. Springer, 2009.

[7] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging –
Second Edition. Morgan Kaufmann, 2009.

[8] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification,” http://www.omg.org/spec/QVT/1.1/Beta2/PDF/, 2009.

[9] A. Schürr, “Specification of Graph Translators with Triple Graph Gram-
mars,” in Proc. of the 20th Int. Workshop on Graph-Theoretic Concepts
in Computer Science, 1994, pp. 151–163.

[10] J. Schönböck, “Testing and Debugging of Model Transformations,”
Ph.D. dissertation, Vienna University of Technology, Business Infor-
matics Group, 2011.

[11] J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt, Eds., Proc. of Model
Transformations in Practice Workshop @ Int. Conf. on Model Driven
Engineering Languages & Systems, Montego Bay, Jamaica, 2005.

[12] A. Valmari, “The State Explosion Problem,” in Proc. of Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, based on the Advanced
Course on Petri Nets, September, Dagstuhl, Germany, 1998, pp. 429–
528.

[13] T. Murata, “Petri nets: Properties, Analysis and Applications,” Proc. of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[14] R. Heckel, J. M. Küster, and G. Taentzer, “Confluence of Typed
Attributed Graph Transformation Systems,” in Proc. of the 1st Int. Conf.
on Graph Transformation,Barcelona, Spain, 2002, pp. 161–176.

[15] R. Wagner, “Developing Model Transformations with Fujaba,” in Proc.
of the 4th Int. Fujaba Days, Bayreuth, Germany, 2006, pp. 79–82.

[16] A. Königs, “Model Transformation with TGGs,” in Proc. of Model
Transformations in Practice Workshop @ Int. Conf. on Model Driven
Engineering Languages & Systems, Montego Bay, Jamaica, 2005.

[17] L. Geiger, “Model Level Debugging with Fujaba,” in Proc. of 6th Int.
Fujaba Days, Dresden, Germany, 2008, pp. 23–28.

[18] A. Balogh and D. Varró, “Advanced model transformation language
constructs in the VIATRA2 framework,” in Proc. of ACM Symposium
On Applied Computing, Dijon, France, 2006, pp. 1280–1287.

[19] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model
Transformation Tool,” Science of Computer Programming, vol. 72, no.
1-2, pp. 31–39, June 2008.

[20] M. Lawley and J. Steel, “Practical Declarative Model Transformation
with Tefkat,” in Proc. of Model Driven Engineering Languages &
Systems Satellite Events, Montego Bay, Jamaica, 2006, pp. 139–150.

[21] M. T. Hibberd, M. J. Lawley, and K. Raymond, “Forensic Debugging
of Model Transformations,” in Proc of Int. Conf. on Model Driven
Engineering Languages & Systems, Nashville, USA, 2007, pp. 589–604.

[22] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer,
“Termination Analysis of Model Transformation by Petri Nets,” in Proc.
3rd Int. Conf. on Graph Transformations, Natal, Rio Grande do Norte,
Brazil, 2006, pp. 260–274.

[23] J. Lara and H. Vangheluwe, “Automating the Transformation-Based
Analysis of Visual Languages,” Formal Aspects of Computing, vol. 21,
2009.

[24] J. Lara and E. Guerra, “Formal Support for QVT-Relations with
Coloured Petri Nets,” in Proc. of Int. Conf. on Model Driven Engineering
Languages & Systems, Denver, CO, USA, 2009, pp. 256–270.

[25] M. Wimmer, A. Kusel, J. Schönböck, G. Kappel, W. Retschitzegger,
and W. Schwinger, “Reviving QVT Relations: Model-Based Debugging
Using Colored Petri Nets,” in Proc. of Int. Conf. on Model Driven
Engineering Languages & Systems, Denver, CO, USA, 2009, pp. 727–
732.

[26] M. Wimmer, G. Kappel, J. Schönböck, A. Kusel, W. Retschitzegger,
and W. Schwinger, “A Petri Net based Debugging Environment for
QVT Relations,” in Proceedings of Int. Conf on Automated Software
Engineering, Auckland, New Zealand, 2009, pp. 1–12.

[27] J. Cabot, R. Clarisó, E. Guerra, and J. Lara, “Analysing Graph Trans-
formation Rules through OCL,” in Proc. of the Int. Conf. on Model
Transformations, Zürich, Switzerland, 2008.

[28] J. Troya and A. Vallecillo, “Towards a rewriting logic semantics for
ATL,” in Proc. of Int. Conf. on Model Transformations, Malaga, Spain,
2010, pp. 230–244.

	Introduction
	Transformation Nets in a Nutshell
	Basic Design Principles
	Running Example
	Transformation Nets by Example

	Code-Smells in Model Transformations
	Simulation-Based Debugging
	Selection
	Inspection
	Dynamics.

	Query-Based Debugging
	Dynamic Slicing by Means of OCL

	Property-Based Debugging
	Fixing Failures
	Adapting the Model
	Adapting the Transformation Logic

	Lessons Learned
	Related Work
	Conclusion and Future Work
	References

