
TROPIC – A Framework for
Model Transformations on Petri Nets in Color∗

[Extended Abstract]

M. Wimmer
TU Vienna

wimmer@big.tuwien.ac.at

A. Kusel
JKU Linz

kusel@bioinf.jku.at

J. Schoenboeck
TU Vienna

schoenboeck@bioinf.jku.at
W. Retschitzegger
University of Vienna

werner@bioinf.jku.at

W. Schwinger
JKU Linz

wieland.schwinger@jku.ac.at

ABSTRACT
Model transformation languages, the cornerstone of Model-
Driven Engineering, often lack mechanisms for abstraction,
reuse and debugging. We propose a model transformation
framework providing different abstraction levels together with
an extensible library of predefined transformations and a
dedicated runtime model in terms of Coloured Petri Nets
for transformation execution and debugging.

Keywords
Model Transformation, Mapping Operator, Reuse, Abstrac-
tion, Debugging, Colored Petri Nets, Runtime Model

1. INTRODUCTION
Model-Driven Engineering (MDE) places models as first-
class artifacts throughout the software lifecycle, leading to
a change from the “everything is an object” paradigm to
the “everything is a model” paradigm [1]. The availabil-
ity of proper model transformation languages is thereby the
crucial factor, since transformation languages are for MDE
as important as compilers are for high-level programming
languages. Several kinds of dedicated model transforma-
tion languages have emerged (see e.g., [2] for a comparison),
which allow, in a first phase, the specification of transforma-
tions, from elements of a source metamodel to elements of
a target metamodel, and, in a second phase, the automatic
execution thereof on the underlying models. None of these
languages, however, not even the QVT standard proposed
by the OMG, became generally accepted as state-of-the-art
approach in practice, which seems to be, among others, due
to the following reasons. Concerning the specification phase,
firstly, existing model transformation languages do not pro-
vide appropriate abstraction mechanisms to deal with the

∗This work has been partly funded by the Austrian Science
Fund (FWF) under grant P21374-N13.

complexity of overcoming structural heterogeneities between
different metamodels, a form of heterogeneity well known in
the area of database systems (cf., e.g., [5]), when specifying
mappings between different schemata. Secondly, current ap-
proaches lack suitable reuse mechanisms in order to reduce
the high and error-prone effort of specifying recurring trans-
formations. Concerning the execution phase, firstly, trans-
formation engines used for executing model transformations
operate on a considerably lower level of abstraction than the
specified mapping leading to an impedance mismatch be-
tween specification and execution. Secondly, current trans-
formation languages provide a limited view on the execution
of model transformations, since metamodels, models, trans-
formation specification, and trace information are scattered
across different artifacts, all of them hampering understand-
ability and debuggabilty of model transformations.

2. GOALS
Our overall goal is to provide a framework for developing
model transformations, in order to resolve structural het-
erogeneities between metamodels which tackles the afore-
mentioned limitations of existing approaches. This overall
goal can be further divided into three subgoals. Firstly,
the specification phase should be supported by appropri-
ate abstraction mechanisms and reuse facilities to increase
productivity of transformation development and to ensure
the quality of the resulting transformations. Secondly, the
execution phase should be facilitated by a suitable repre-
sentation of the runtime characteristics of a transformation
together with debugging services to enhance understand-
ability of transformations and to improve their correctness.
Thirdly, the concepts developed for both phases should be
applicable to certain selected existing model transformation
languages such as the QVT standard.

3. APPROACH
To realize our goals, a dedicated framework called TROPIC
(Transformations on Petri Nets in Color) is provided allow-
ing the specification and usage of mapping operators for cer-
tain model transformation scenarios as well as the actual ex-
ecution and debugging of transformations, either in a stan-
dalone manner or as a front-end for other model transforma-
tion languages. In particular, TROPIC provides two views
on a transformation problem, namely an abstract mapping
view which declaratively describes the semantic correspon-
dences on a high level of abstraction and a transformation



Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

Transformation NetTransformation Net

Source PlacesSource Places Target PlacesTarget PlacesTransformation LogicTransformation Logic

Class Table

attr

Attribute
Column

cols

C2C

R2R

compile
compile

Source Model Target Model

conforms to conforms to

import export
NameID NameID

Table Person

ID:Integer

Name:String

Person

ID:Integer

Name:String

Person

Class Person

C2CC2C

R2RR2R

Legend

LHS RHS
Mapping Model

One Colored Place

Two Colored Place

One Colored Token

Two Colored Token

Transition

C2CC2C Mapping Operator

Required Interface

Provided Interface

name:String

Type

type

C2CC2CC2C

C2AC2A

type

Type

name

type

C2C

C2A

Figure 1: Two Views on a Transformation Problem

view which reveals all the details of the transformation logic
being immediately executable (cf. Figure 1).
Mapping View. The mapping view comprises mapping
operators which connect source metamodel elements to tar-
get metamodel elements [4]. These mapping operators en-
capsulate recurring transformation logic and are offered to
a transformation designer by means of an extensible library.
For defining the reusable mapping operators, we use a sub-
set of the UML 2 component diagram concepts, since they
are declarative in nature, provide a black-box mechanism to
hide transformation logic details and support an interface
concept allowing for the composition of mapping operators.
Transformation View. An executable transformation view
is generated on basis of the mapping view. For this, each
mapping operator of the mapping view must be provided
with a well defined operational semantics in the form of
some executable piece of transformation logic. For realiz-
ing the transformation view, we are using a modified form
of Colored Petri Nets [3], denoted as Transformation Nets
[6, 8, 9, 10] due to the following reasons. Firstly, Transfor-
mation Nets enable a process-oriented execution of trans-
formations, each mapping operator being realized by an in-
dependent set of transitions and places without the need
for specifying an explicit control flow, thus preventing any
impedance mismatch between mapping view and transfor-
mation view. Secondly, Transformation Nets allow for a ho-
mogenous representation of all artifacts involved in a model
transformation, thus being especially suited for gaining an
understanding of the intricacies of a specific model trans-
formation. Finally, Transformation Nets inherently form an
explicit runtime model being immediately executable, thus
facilitating the debugging of model transformations.

4. IMPLEMENTATION
A first prototype to build up the mapping view and the
transformation view as well as to execute a certain trans-
formation is already operational which will be applied in
several case studies to verify our approach. This prototype

is built on the Eclipse Modeling Framework (EMF) in com-
bination with the Graphical Modeling Framework (GMF)
and is realized as Eclipse plugin.

5. EVALUATION
In the course of evaluating our approach it should be tested,
whether productivity, quality, understanding and debugga-
bility of model transformations are increased through the
application of metrics as e.g. proposed in [7]. For this pur-
pose, we intend to conduct case studies with a representative
selection of metamodels defining structural and behavioral
languages as well as empirical studies with 200 master stu-
dents of our MDE courses. Furthermore, we intend to ar-
range collaborative studies with three international project
partners, being the inventors of other model transformation
languages (Prof. Dr. Jean Bézivin, Prof. Dr. Andy Schürr)
as well as of Colored Petri Nets (Prof. Dr. Kurt Jensen) in
the form of dedicated workshops.

6. REFERENCES
[1] J. Bézivin. On the Unification Power of Models.

Journal on Software and Systems Modeling,
4(2):171–188, 2005.

[2] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3):621–645, 2006.

[3] K. Jensen. Coloured Petri nets: basic concepts,
analysis methods, and practical use. Springer, 1992.

[4] G. Kappel, H. Kargl, T. Reiter, W. Retschitzegger,
W. Schwinger, M. Strommer, and M. Wimmer. A
Framework for Building Mapping Operators Resolving
Structural Heterogeneities. In Proc. of Information
Systems and e-Business Technologies (UNISCON’08),
Klagenfurt, 2008. Springer.

[5] V. Kashyap and A. Sheth. Semantic and Schematic
Similarities between Database Objects: A
Context-based approach. The VLDB Journal,
5(4):276–304, 1996.

[6] T. Reiter, M. Wimmer, and H. Kargl. Towards a
runtime model based on Colored Petri Nets for the
execution of model transformations. In Proc. of 3rd
Workshop on Models and Aspects @ ECOOP’07,
Berlin, 2007.

[7] M. van Amstel, C. Lange, and M. van den Brand.
Using Metrics for Assessing the Quality of ASF+SDF
Model Transformations. In Proc. of ICMT2009 - Int.
Conf. on Model Transformation Theory and Practice
of Model Transformations, Zurich, 2009. Springer.

[8] M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger,
and W. Schwinger. Lost in Translation?
Transformation Nets to the Rescue! In Proc. of 8th
Int. Conf. on Information Systems Technology and its
Applications (UNISCON’09), Sydney, 2009. Springer.

[9] M. Wimmer, A. Kusel, J. Schoenboeck, G. Kappel,
W. Retschitzegger, and W. Schwinger. Reviving QVT
Relations: Model-based Debugging using Colored
Petri Nets. In MoDELS ’09: Proc. of the 12th Int.
Conf. on Model Driven Engineering Languages and
Systems, Denver, USA, 2009. Springer. Short Paper.

[10] M. Wimmer, A. Kusel, J. Schoenboeck, T. Reiter,
W. Retschitzegger, and W. Schwinger. Let’s Play the
Token Game – Model Transformations Powered By
Transformation Nets. In Proc. of Int. Workshop on
Petri Nets and Software Engineering, Paris, 2009.


