SURVEYING RULE INHERITANCE
IN MODEL-TO-MODEL
TRANSFORMATION LANGUAGES

Evaluation Examples

EXAMPLES

In these tiny examples, simple state machines should be
transformed into simple petri nets;

The intent of the examples is to discover how diverse
transformation languages (Kermeta, QVT-O, TGGs, TNs, ATL, ETL)
interpret inheritance

Thus, each example variation tries to reveal a certain aspect (as
detailed by the goal of evaluation)

EXAMPLE 1

Description

In this example Mode1Elems should be transformed into Elements and
States into Places by two inheriting rules in order to reuse the name
assignment;

Moreover, only those State instances should be transformed, whose kind is
unequal ,initial”
Goal(s) of Evaluation

Check for which instances, a certain rule is applicable, i.e., whether indirect
instances (like Transitions in the example) are affected

Check, whether the assignments of a superrule are inherited by a subrule
Check, whether elements are re-matched by a more general rule, if a condition

fails
Source Metamodel Target Metamodel
ModelElem Element
name : String name : String
5 3
I | I |
State L.l source |y ngition Place L.* from { pnTransition
kind : String 1.1 lorgel guard : String hasToken : Boolean &2 guard : String
isActive : Boolean

EXAMPLE 1 — KERMETA (1/3)

Exemplary Source Model

— . Target Model produced by Kermeta

sl:State

name = “s1” sl:Element

kind = “initial” . —wqu

o t1:Transition name = “s1 tl:Element

isActive = true — —

name = “t1“ name = “t1“

s2:State guard = ““ s2:Place

name = “s2“ name = “s2“

S ag hasToken = false
kind = “final Target
isActive = false

Results/Findings (according to goals)
Kermeta allows to implement type substitutability; nevertheless there is no direct
support for anything, since the transformation code, representing transformation
rules, must be explicitly called (so the matching as well as the rule selection is done
manually); for this, the trace model has to be explicitly kept (i.e., there is no support
for an automatically generated trace model)

In Kermeta the assignments of the superrule may be inherited; nevertheless, this has
to be implemented manually, again; a major problem in this respect is that the
interfaces of the methods must be kept identical (i.e., neither the parameters nor the
return type might be changed co- or/and contravariant); consequently type casts in
subrules are required

In Kermeta elements might be matched by a more general rule, if the condition fails;
nevertheless, this is entirely under control of the developer, since the matching
behavior is programmed manually

EXAMPLE 1 — KERMETA (2/3)

//transformation code for Statemachine2PetriNet
class Statemachine2PetriNet{

operation conditionFulFilled(s : Statemachine) : kermeta::standard::Boolean is do
result := true
end

operation assignments (s : Statemachine, p : PetriNet) is do
end

operation referenceAssignments (s : Statemachine, p : PetriNet,
trace: Trace<Object, Object>) is do
s.elements.each{ e |
if trace.getTargetElem(e) != void then
p.elements.add (trace.getTargetElem(e) .asType (Element))
end

end

//transformation code for ModelElem2Element
class ModelElem2Element {

operation conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := true
end

operation assignments(m : ModelElem, e : Element) is do
e.name := m.name
end

operation referenceAssignments (m : ModelElem, e : Element,
trace: Trace<Object, Object>) is do
end

EXAMPLE 1 — KERMETA (3/3)

//transformation code for State2Place
class State2Place inherits ModelElem2Element {

method conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := super (m)
result := result and (m.asType (State)).kind != "initial"

end

method assignments(m : ModelElem, e : Element) is do
super (m, e)
(e.asType (Place)) .hasToken := (m.asType (State)) .isActive
end

method referenceAssignments (m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
super (m,e, trace)
end

ExampLE 1 — QVT-O (1/2)

Exemplary Source Model Target Model produced by QVT-O
sl:State Seliee
— sl:Element
name = “s1“ e1n
kind = “initial“ — name = °s t1:Element
. . tl:Transition e
isActive = true name = “t1
name = “t1“ s2:Place
s2:State guard = name = “s2“
name = “s2“ hasToken = false
kind = “final” Target

isActive = false

Results/Findings (according to goals)
QVT-0 supports type substitutability, i.e., indirect instances are transformed by a
certain rule, if no specialized rule exists, that is called before;
This is inferred from the fact, that the instance t1 of type Transition has
been matched by the rule ModelElem2Element resulting in an instance t1 of
type Element
In QVT-O the assignments of the superrule are inherited (keyword inherits);
This is inferred from the fact that, e.g., instance s2 has a corresponding name
In QVT-O elements are re-matched by a more general rule, if the conditions fails;
This is inferred from the fact, that an instance s1 of type Element results
originating from s1 of type State

ExampPLE 1 — QVT-0 (2/2)

transformation testTrafo(in inModel : sm, out outModel : pn);

main () {
inModel.rootObjects () [Statemachine] -> map SM2Petri();

}

mapping Statemachine::SM2Petri() : PetriNet {
//please note that specific rules must be called first!
elements := self.elements[State] -> map State2Place();

elements += self.elements[ModelElem] -> map ModelElem2Element () ;
}

mapping ModelElem: :ModelElem2Element () : Element {
name := self.name;
}
mapping State::State2Place() : Place inherits ModelElem::ModelElem2Element
when{self.kind != 'initial'}{

result.hasToken := self.isActive;

}

ExampLE 1 — TGGs (1/2)

Exemplary Source Model

Rule definitions see next slide

sl:State e

name = “s1“
kind = “initial“
isActive = true

tl:Transition

name = “t1“
s2:State guard = ““
name = “s2“
kind = “final Target

isActive = false

Target Model produced by TGGs

sl:Element
name = “s1“ tl:Element
name = “t1“
s2:Place
name = “s2“
hasToken = false

Results/Findings (according to goals)

TGGs support type substitutability, i.e., indirect instances are transformed by a

certain rule, if no specialized rule exists that matches;

In TGGs the assignments of the superrule are inherited (but have to be repeated

explicity by a copy);

In TGGs elements are re-matched by a more general rule, if the specialized rule

application fails;

ExaAmMPLE 1 — TGGs (2/2)

TGG-Schema (type level) ModelElemToElemen(...)

| e Sateaaine © StaternachineToPetrinet i aargers | P I -
i 0.1 P Petrinet —l—l frgQbil ; Petrinet
| StatemachineToPetrined)) srtirrinching petring
- contains containg
2 = odelelem & ModelBerToBH whement e
IMW ['%} 0.1 Element
I ModelFlemTaflemen{name:String)
slements slements
e S= rlme g name := name
ol 10 StateToace plck
wouTtae “tagets
| state IE o1 ; Tas] Pace
e e e
[uw: seifkind <> irisal” '
StateToPlace(...)
| st HM ikl > g0t sPetrinet.
statemachine petrinet
StatemachineToPetrinet(...)
containg
contans
acreales > ag !."_:l"i ___________ —= =creates
sccbiliStatemachine. < ¢ toolnkliStatemachnsToPetrme. = tr0f tPatrinat |
S . elements
icreates . createn i
cOu:State | e

shctive 1= activeFlag
mame ;= name

St

== tgObid :Place
hasToken ;= activaFlag
name (= name

EXAMPLE 1 — TNs (1/2)

H Statemachine

4 (oid=a}) [Element
5 ModelElem =+ elements
—— | ¢ o2
=+ elements = name:String — @ ({oid=a,val=b '{ % ({oid=a,valuesb® nameString
L YRS W & D/ ==
| S—
‘T = ididInt
L4
[Transition [State et 4 (oid=
v source & ([oid=aval=
= guard:String L 4+ {oid=avalb 4 Hoid=a})
= kind:String AN N, g Place £ PNTransition
i ; =+from
—Lta,gﬂ [@a.kind<>'initial'] | + goidzavaluese = guard:String
———————= hasToken:Boolean
. —|_) o ishctive:Boolean

&« &« > =

Exemplary Source Model

s1:State source Target Model produced by TN

name = “s1 s1:Element

kind = “initial“ 1:Transiti

isActive = true ti:Transition name = “s1 t1:Element

name = “t1“ name = “t1“

s2:State guard = ““ s2:Place

name = “s2“ name = “s2“

kind = “final” Target hasToken = false

isActive = false

EXAMPLE 1 — TNs (2/2)

Results/Findings (according to goals)

TNs support type substitutability, i.e., indirect instances are transformed by a
certain rule, if no specialized rule exists that matches;

This is inferred from the fact that the instance t1 of type Transition has
been matched by the rule Mode1lElem2Element resulting in an instance t1 of
type Element (green token)

In TNs, the assignments of the superrule are inherited;

This is inferred from the fact, that, e.g., instance s2 (dark green token) has a
corresponding name

In TNs, elements are re-matched by a more general rule, if the condition fails
(kind of s1is initial and therefore not matched);

This is inferred from the fact, that an instance s1 (red token) of type Element
results originating from s1 of type State

EXAMPLE 1 — ATL

Exemplary Source Model

source

sl:State
name = “s1“
kind = “initial“
. . tl:Transition
isActive = true —
name = “t1“
s2:State guard = ““
name = “s2“
kind = “final” Target

isActive = false

rule ModelElem2Element{
from mElem : Statemachine!ModelElem
to elem : Petrinet!Element (
name <- mElem.name
)
}

rule State2Place extends ModelElem2Element {
from mElem : Statemachine!State (
mElem.kind <> ‘initial’)
to elem : Petrinet!Place (
hasToken <- mElem.isActive
)
}

Target Model produced by ATL

sl:Element
name = “s1“ tl:Element
name = “t1“
s2:Place
name = “s2“

hasToken = false

Results/Findings (according to goals)

ATL supports type substitutability, i.e., indirect instances are transformed by a
certain rule, if no specialized rule exists, that matches;

This is inferred from the fact, that the instance t1 of type Transition has
been matched by the rule Mode1Elem2Element resulting in an instance t1 of
type Element

In ATL the assignments of the superrule are inherited;

This is inferred from the fact that, e.g., instance s2 has a corresponding name

In ATL elements are re-matched by a more general rule, if the conditions fails;
This is inferred from the fact, that an instance s1 of type Element results
originating from s1 of type State

EXAMPLE 1 — ETL

Exemplary Source Model

source

sl:State

name = “s1“

kind = “initial“
isActive = true

tl:Transition

name = “t1“
s2:State guard = ““
name = “s2“
kind = “final Target

isActive = false

@greedy
rule ModelElem2Element
transform mElem : Statemachine!ModelElem
to elem : Petrinet!Element {
elem.name := mElem.name;

}

rule State2Place
transform mElem : Statemachine!State
to elem : Petrinet!Place
extends ModelElem2Element {
guard : mElem.kind <> ‘initial’
elem.hasToken := mElem.isActive;

}

Target Model produced by ETL

sl:Element

name = “s1”

tl:Element

s2:Element

name = “t1“

name = “s2“

s2:Place

name = “s2“
hasToken = false

Results/Findings (according to goals)

ETL supports type substitutability, i.e., indirect instances are transformed by a
rule, if the @greedy annotation is added; nevertheless, the interpretation is
different than in ATL, since the superrule matches all direct and indirect instances
irrespective whether more specific rules match them too

This is inferred from the fact that four instances result

In ETL the assignments of the superrule are inherited;
This is inferred from the fact that instance s2 has a corresponding name

In ETL elements are never re-matched, since the elements are matched by the
more general rule anyway

EXAMPLE 2

Description

In this example Mode1Elems should be transformed into Elements, but only if
they exhibit a certain name (i.e.,, not null)

Furthermore, States should be transformed into P1aces, but again only if the
kindis unequal,initial®; thereby this rule should again inherit from the base
rule in order to reuse the name assignment;

Goal(s) of Evaluation

Check how several conditions are interpreted in an inheritance hierarchy of rules;
thereby it should be found out, whether conditions are inherited as well (i.e., in
order to fulfill a certain condition, also the conditions of all superrules must be
fulfilled)

Source Metamodel Target Metamodel

ModelElem Element

name : String name : String

ZF
I | | |

*
State Lol st Transition Place 1..* from PNTransition

1..1 target 1.* to

kind : String
isActive : Boolean

hasToken : Boolean

guard : String guard : String

EXAMPLE 2 — KERMETA (1/3)

Exemplary Source Model Target Model produced by Kermeta

source
sl:State %
— sl:Element
name = “s1“ tl:Transition P
‘ e sssses— name = “s1
kind = “initial hame = “t1°
isActive = true wu t1:Element
guard =
name = “t1“
s2:State _,target
name = null
kind = “initial” [&—=2He—
isActive = false 2:Transition
t2:Element
s3:State name = “t2“ ey
_ uu name = “t2
guard =
name = null
kind = “final“ _—
) . arge
isActive = false =

Results/Findings (according to goals)

Kermeta allows to achieve the goal that conditions are interpreted as composing;
nevertheless, this is again solely influenced by the programmer who has full
control

EXAMPLE 2 — KERMETA (2/3)

//transformation code for Statemachine2PetriNet
class Statemachine2PetriNet{

operation conditionFulFilled(s : Statemachine) : kermeta::standard::Boolean is do
result := true
end
operation assignments (s : Statemachine, p : PetriNet) is do
end
operation referenceAssignments (s : Statemachine, p : PetriNet, trace: Trace<Object, Object>) is do
s.elements.each{ e |
if trace.getTargetElem(e) != void then
p.elements.add (trace.getTargetElem(e) .asType (Element))
end
}
end

//transformation code for ModelElem2Element
class ModelElem2Element {

operation conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := m.name != "" and m.name != void
end
operation assignments(m : ModelElem, e : Element) is do
e.name := m.name
end
operation referenceAssignments(m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
end

EXAMPLE 2 — KERMETA (3/3)

//transformation code for State2Place
class State2Place inherits ModelElem2Element {

method conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := super (m)
result := result and (m.asType (State)).kind != "initial"

end

method assignments(m : ModelElem, e : Element) is do

super (m,e)

(e.asType (Place)) .hasToken := (m.asType (State)).isActive
end

method referenceAssignments(m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
super (m,e, trace)
end

EXAMPLE 2 — QVT-0 (1/2)

Exemplary Source Model Target Model produced by QVT-O
sl:State &‘
sl:Element
name = “s1”“ t1:Transition e 4
. et —— name = “sl
kind = “initial name = “t1°
isActive = true wa tl:Element
guard =
name = “t1“
s2:State %target
name = null
kind = “initial* [&—=om——y s3:Place t2:Element
isActive = false 2:Transition name = ““ name = “t2
hasToken = false
s3:State name = “t2°
uard = ““
name = null g
kind = “final” powe
. . arge
isActive = false e

Results/Findings (according to goals)
Conditions are not inherited in QVT-0; this is inferred from the fact, that a
Place s3 has been instantiated for the State s3; furthermore, one
might infer that the code is not executed for those model elements, which
do not fulfill the condition (thus s3 does not exhibit a name)

EXAMPLE 2 — QVT-0 (2/2)

transformation testTrafo(in inModel : sm, out outModel : pn);
main() {
inModel.rootObjects () [Statemachine] -> map SM2Petri();

}

mapping Statemachine::SM2Petri() : PetriNet ({
//please note that specific rules must be called first!
elements := self.elements[State] -> map State2Place();

elements += self.elements[ModelElem] -> map ModelElem2Element () ;
}

mapping ModelElem: :ModelElem2Element () : Element

when{self.name != null and self.name != "''}{
name := self.name;
}
mapping State::State2Place() : Place inherits ModelElem::ModelElem2Element
when{self.kind != 'initial'}{

result.hasToken := self.isActive;
}

EXAMPLE 2 — TGGs (1/2)

Exemplary Source Model

Target Model produced by TGGs

Rule definitions see next slide

kind = “initial”

< —

source

sl:State ﬁ
name = “s1“ tl:Transition
kind = “initial“
s name = “t1“
isActive = true wu

guard =

s2:State W’

name = null
source

isActive = true

sl:Element

name = “s1“

tl:Element

name = “t1“

t2:Element

name = “t2“

isActive = false t2:Transition
s3:State name = “t2“
uard = ““
name = null g
kind = “final“
target

Results/Findings (according to goals)

Conditions are inherited; a subrule only matches, if its conditions and all
inherited conditions are fulfilled

“soures

EXAMPLE 2 — TGGs (2/2)

TGG-Schema (type level)

statemachine

{ context: StateToPlacer:stats
inv: self.kind <> “initial"

ModelElemToElemen(...)

StatemachineToPetrinet(...)

scretes

s2cObil i Statemaching. <

IsActive : = activeFlag

S i —— — e
stargetr L
s 0.1 | Petrinet statemachine petrinet
contains contains
0 ModelElemToElemen s i
ModelEleniToElemen{name:Strng) 9.1 ik acreates
s1cObi2 : ModelElem.
iy ——
“ name = name
context: H
| € init: naene <> = }IT
10 StateToPtace L W oo
0.1 uaie
StateToPlace{name:String, activeFlag:Boolean)
ey
P R ™
7 e]
StateToPlace(...)
SrcObl1 :Statemachine < toalink > ira0bi1;Petrinet
statemachine petrinet
acreates ¥ screates | contains contains
" toglinkl:StatemachneToPatrme. . = tmOiiL i Petrinet.
elements elements
[acreates e
scObi? ;State e 3
e ¢ toolink:StateToptace =] tro0bi2 :Place
name : = name ~ s name ; = name

hasToken : = activeFlag

EXAMPLE 2

= elements
E Statemachine \

5l ModeIE\em

—TNs (1/2)

| PetriMet

= elements

[not @a.name.oclisUndefined()] =/ _____—— —
and [@a.name <>"]

4 {foid=a}) H Element

= name:String

H Transition Etarget

o guard:String

° =

=HSOUFCE

®

\ = kind:5tring

& 7

]

4 (foid=a])

=
i
.

4 ({oid=3a,val=h

1

4 ({oid=a,value=h}) name:String
—

[&8
[o0

B state

o iddnt

B

S .

| ({oid=a,valg

o ishctive:Boolean

4 ({oid=p]

4 ({oidza}) |
g Place = to £ PMTransition

04;. iold:a,value:f iisToken:Boolean e

[—

T—l:-vfrom

= guard:String

—=

itial']

EXAMPLE 2

—TNs (2/2)

Exemplary Source Model

sl:State

source

N

name = “s1”
kind = “initia
isActive = true

|«

t1:Transition

name = “t1“

isActive = false

guard = ““
s2:State %‘target
name = null
kind = “initial* [&—=m——y

t2:Transition

isActive = false

s3:State name = “t2“
uard = ““
name = null g
kind = “final”
target

Results/Findings (according to goals)

Target Model produced by TNs

sl:Element

name = “s1”

t1:Element

name = “t1“

t2:Element

name = “t2“

Conditions are inherited in TNs, i.e., a rule may transform a certain element, only,
if the conditions specified by this rule and all other inherited conditions are

fulfilled;

This is inferred from the fact, that only Element s1 results, originating from
State s1;furthermore, the evaluation process is composing descendent-driven

EXAMPLE 2 — ATL

Exemplary Source Model

source

sl:State <
name = “s1“ tl:Transition
kind = “initial“
s name = “t1“
isActive = true wu
guard =
s2:State W’
name = null

source

kind = “initial” %

isActive = false t2:Transition

s3:State name = “t2“
uard = ““
name = null g
kind = “final“
target

isActive = false

rule ModelElem2Element{
from mElem : Statemachine!ModelElem (
mElem.name <> OclUndefined
and mElem.name <> ")
to elem : Petrinet!Element (
name <- mElem.name
)
}

rule State2Place extends ModelElem2Element {
from mElem : Statemachine!State (
mElem.kind <> ‘initial’)
to elem : Petrinet!Place (
hasToken <- mElem.isActive
)
}

Target Model produced by ATL

Results/Findings (according to goals)

Conditions are inherited in ATL, i.e., a rule may transform a certain element, only,
if the conditions specified by this rule and all other inherited conditions are

fulfilled;

sl:Element
name = “s1“
tl:Element
name = “t1“
t2:Element
name = “t2“

This is inferred from the fact, that only Element s1 results, originating from
State s1; moreover, short circuit evaluation takes place and the evaluation
process starts at the base rule, i.e., parent-driven (as may be inferred by adding
corresponding debug () messages)

EXAMPLE 2 — ETL

Exemplary Source Model

rule ModelElem2Element
transform mElem : Statemachine!ModelElem
to elem : Petrinet!Element {
guard : mElem.name <> null
and mElem.name <> "
elem.name := mElem.name;

}

rule State2Place
transform mElem : Statemachine!State
to elem : Petrinet!Place
extends ModelElem2Element {
guard : mElem.kind <> ‘initial’
elem.hasToken := mElem.isActive;

}

source
slistate [&——————

name = “s1“ tl:Transition

kind = “initial“

o name = “t1“

isActive = true wu

guard =

s2:State W’

name = null

kind = “initial* [&—=2HE—

isActive = false t2:Transition
s3:State name = “t2“

uard = ““

name = null g

kind = “final“ po——

. . arge

isActive = true =

Results/Findings (according to goals)

Target Model produced by ETL

Conditions are inherited in ETL, i.e., a rule may only transform a certain element, only, if
the conditions specified by this rule and all other inherited conditions are fulfilled;

This is inferred from the fact that no target element has been created (s1 and s?2 fail
due to the condition on rule State2Place, s3 fails due to the condition on the
ModelElem2Element rule);
When adding println () messages, one may find that the conditions of the subrule
are executed first and then the conditions of the superrule (descendent-driven)

