EXAMPLE 3

Description
In this example Mode1Elems should be transformed into Elements

Furthermore, States should be transformed into P1aces; thereby this rule
should again inherit from the base rule, but this time the inherited assignment
should be overridden

Goal(s) of Evaluation
Check whether the languages support for the overriding of inherited assignments

Source Metamodel Target Metamodel

ModelElem Element

name : String
comment : String comment : String

I 1 [; N 1
State 1.1 source | yansition Place L. Uil

name : String

PNTransition

1..1 target 1.* to

kind : String
isActive : Boolean

hasToken : Boolean

guard : String guard : String

EXAMPLE 3 — KERMETA (1/3)

Target Model produced by Kermeta
Exemplary Source Model

source

kind = “initial”

isActive = false

tl:Transition

Results/Findings (according to goals)

Overridings of assignments are supported

sl:State sl:Place
name = “s1“ name = “slsubrule”
comment = “x“ comment = “x“

hasToken = true

“ i

comment = “y
hasToken = false

isActive = true _apqa
name ="t1 tl:Element
comment = “z“
guard = ““ name = “t1“
s2:State comment = “z“
name = “s2“
comment = “y“ target s2:Place
kind = “final” name = “s2subrule”

EXAMPLE 3 — KERMETA (2/3)

//transformation code for Statemachine2PetriNet
class Statemachine2PetriNet {

operation conditionFulFilled(s : Statemachine) : kermeta::standard::Boolean is do
result := true
end

operation assignments (s : Statemachine, p : PetriNet) is do
end

operation referenceAssignments (s : Statemachine, p : PetriNet, trace: Trace<Object, Object>) is do
s.elements.each{ e |
if trace.getTargetElem(e) != wvoid then
p.elements.add(trace.getTargetElem(e) .asType (Element))
end

end

//transformation code for ModelElem2Element
class ModelElem2Element {

operation conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := true
end

operation assignments (m : ModelElem, e : Element) is do

e.name := m.name
e.comment := m.comment
end

operation referenceAssignments(m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
end

EXAMPLE 3 — KERMETA (3/3)

//transformation code for State2Place
class State2Place inherits ModelElem2Element {

method conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := super (m)
end

method assignments(m : ModelElem, e : Element) is do
super (m,e)
(e.asType (Place)) .hasToken := (m.asType(State)).isActive
e.name := m.name + "subrule"

end

method referenceAssignments (m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
super (m,e, trace)
end

EXAMPLE 3 — QVT-0 (1/2)

Exemplary Source Model

Target Model produced by QVT-O

source
sl:State sl:Place
name = “s1“ name = “slsubrule” tl:Element
comment = “x“ comment = “x“ name = “t1
kind = “initial” tl:Transition hasToken = true comment = “z%
isActive = true name = “t1“
comment = “z“ s2:Place
s2:State guard =" name = “s2subrule”
Y comment = “y“
name = “s
hasToken = false
comment = “y“ target
kind = “final“
isActive = false

Results/Findings (according to goals)
Overridings of assignments are supported
This is inferred from the fact that the name assignments have been realized according
to the definition as given by the subrule (when adding debugging messages with
dump (), one may find that the original assignments are executed before the
overriding assignments in the execution and thus, the assignments are executed
parent-driven)

EXAMPLE 3 — QVT-0 (2/2)

transformation testTrafo(in inModel : sm, out outModel : pn);
main () {
inModel.rootObjects () [Statemachine] -> map SM2Petri();
}

mapping Statemachine::SM2Petri () PetriNet {
//please note that specific rules must be called first!
elements := self.elements[State] -> map State2Place();
elements += self.elements[ModelElem] -> map ModelElem2Element () ;

}

mapping ModelElem: :ModelElem2Element () : Element {
name := self.name;

dump ('superregel fuer ' + self.name);

comment := self.comment;

}

mapping State::State2Place() Place inherits ModelElem: :ModelElem2Element {
name := self.name + 'subrule';
dump ('subregel fuer ' + self.name);,
hasToken := self.isActive;

EXAMPLE 3 — TGGs (1/2)

Exemplary Source Model Target Model produced by TGGs
source
sl:State .
Rule definitions see next slide sl:Place
hame = s1 e name = “slsubrule”
comment = “x — comment = “x“
kind = “initial tl:Transition hasToken = true
isActive = true name = “t1“
comment = “z“ tl:Element
s2:State guard = name = “t1“
name = “s2° comment = “z“
comment ="y target s2:Place
kind = “final“ — ”
isActive = false name = “s2subrule
comment = “y“
hasToken = false

Results/Findings (according to goals)

Overridings of assignments are supported as long as the assignment of the
subrule is at least as strict as the assignment of the superrule. TGGs do not allow
a subrule to match less strict than all its superrules;

EXAMPLE 3 — TGGs (2/2)

TGG-Schema (type level) ModelElemToElement(...)

statemichine 0 StatemachineToPstrinet g [i togLink] \rg0bil : Petringt
- arpate | [
Statemachine| ™ 0.1 o Patrmat 3 T
StatomachraToPatrrot() e statimachine petrinet

contains

. .' medeletern 0 ModalElmToEl n derent o]
ModalFlam| ~ o1 ; o] Hement

StatemachineToPetrinet(...)

scrates screater screates

c0bilsStatemachine <= < ‘toalikl;StatemacheeToPetrine: "\, awl

StateToPlace(...)

e I_E!“"!d L3
statamaching
§ contains
contains
lements | slamants
reatas

name := name.substring(0, name. firstOccurence(”subrule™ < < 4 > e 1= concatiname, “subrule™ |
ommen := commen’ = CONTETIEN = COMMmen

isActive = activeFlag hasToker := activeFlag

ExampLE 3 — TNs (1/2)

H ModelElem

[Statemachine =+ elements - — < (loid=a}) H Element H Petrillet
= name:5trin X e
~0ee g BIEE ®
< |({pid=a, gl % ({oid=a,value=k -
4 4l oid=E valES = name:String
= comment:String .l (oid=3,
Y
iy = comment:Strin
g /
[@b.doncat('subrule’)] @
A |
H PNTransition
[Transition FLE <9 & loid=al}
H State e % (oid=p # H Place = guard:String
= guard:Strin - Q/) = =
———— o kind:String R e ¥ ({(_Did:af\'al”;:'ﬂ}hasToken:Bool... P
. <o XD
—
= target = isActive:Boolean =rfrom

L Ol

CHE0Urce

@

ExamPpLE 3 — TNs (2/2)

Exemplary Source Model

source
sl:State

name = “s1”

comment = “x“

kind = “initial” t1:Transition

isActive = true name = “t1¢

comment = “z“

s2:State guard = "

name = “s2“

comment = “y“ target

kind = “final”

isActive = false

Results/Findings (according to goals)

Overridings of assignments are supported
This is inferred from the fact, that the name assignments have been realized
according to the definition as given by the subrule (the original assignments are
substituted by the overriding assignments; since the patterns are merged to a
common transition, it is not decidable which assighments are executed first)

Target Model produced by TN

sl:Place

name = “s1subrule”
uyu

comment = “x
hasToken = true

tl:Element

name = “t1“

uju

comment = “z

s2:Place

name = “s2subrule”
“

comment = “y
hasToken = false

EXAMPLE 3 — ATL

Exemplary Source Model

source
sl:State

name = “s1“

comment = “x“

kind = “initial“ tl:Transition

isActive = true name = “t1“

comment = “z“

s2:State guard ="

name = “s2“

comment = “y“ target

kind = “final”

isActive = false

rule ModelElem2Element{
from mElem : Statemachine!ModelElem
to elem : Petrinet!Element (
name <- mElem.name,
comment <- mElem.comment
)
}

rule State2Place extends ModelElem2Element {
from mElem : Statemachine!State
to elem : Petrinet!Place (
name <- mElem.name + ‘subrule’,
hasToken <- mElem.isActive
)
}

Results/Findings (according to goals)

Overridings of assignments are supported
This is inferred from the fact that the name assignments have been realized
according to the definition as given by the subrule (when adding debugging
messages, one can find that the original assignments are substituted by the
overriding assignments in the execution and that the assignments are executed

descendant-driven)

Target Model produced by ATL

sl:Place

name = “s1subrule”
uyu

comment = “x
hasToken = true

tl:Element

name = “t1“

uju

comment = “z

s2:Place

name = “s2subrule”
u

comment = “y
hasToken = false

EXAMPLE 3 — ETL

Exemplary Source Model

source

sl:State

name = “s1”

ugu

comment = “x

kind = “initial“ t1:Transition

isActive = true

name = “t1“
comment = “z“
uard = ““
s2:State 8
name = “s2“
comment = “y“ target
kind = “final“

isActive = false

rule ModelElem2Element
transform mElem : Statemachine!ModelElem
to elem : Petrinet!Element {
elem.name := mElem.name;
elem.comment := mElem.comment;

}

rule State2Place
transform mElem : Statemachine!State
to elem : Petrinet!Place
extends ModelElem2Element {
elem.name := mElem.name + ‘subrule’;
elem.hasToken := mElem.isActive;

}

Results/Findings (according to goals)

Overridings of assignments are supported
This is inferred from the fact that the name assignments have been realized

according to the definition as given by the subrule (when adding println ()
messages, one may find that the original assignments are executed first, then
the assignments of the subrule, i.e., parent-driven)

Target Model produced by ETL

sl:Place

name = “slsubrule”

comment = “x
hasToken = true

s2:Place

name = “s2subrule”
uy

comment = “y
hasToken = false

EXAMPLE 4

Description

In this example Mode1Elems should be transformed into Elements and
SMElems into PNElems, both requiring abstract rules, since the classes are
abstract themselves

Moreover, State instances should be transformed into P1ace instances,
inheriting from both abstract rules to avoid code duplicaton, thus multiple
inheritance is needed

Goal(s) of Evaluation

Check whether multiple inheritance is supported and if all inherited assignments
are done correspondingly

Source Metamodel Target Metamodel
SMElem ModelElem PNElem Element
id : Integer name : String id : Integer name : String
*
State 1.1 source | yansition Place L il PNTransition
*
kind : String 1.1 target guard : String hasToken : Boolean [€-2:—2 guard : String
isActive : Boolean
Exemplary Source Model Target Model produced by Kermeta
sl:State SOurce
name = “s1“
id=1
kind = “initial“ tl:Transition
isActive = true name = “41“
id=3
s2:State guard =
name = “s2“
id=2 target
kind = “final”
isActive = false

Results/Findings (according to goals)

Although Kermeta supports multiple inheritance, equally named operations with
different signatures (as in the example) result in problems; this may also not be
resolved by explicitly choosing a certain operation with the from keyword

Anyway the example is not resolvable, since one operation must be chosen and
thus, either the name assignment or the id assignment would be lost

EXAMPLE 4 — KERMETA (2/3)

//transformation code for Statemachine2PetriNet
class Statemachine2PetriNet{

operation conditionFulFilled(s : Statemachine) : kermeta::standard::Boolean is do
result := true
end

operation assignments (s : Statemachine, p : PetriNet) is do
end

operation referenceAssignments (s : Statemachine, p : PetriNet, trace: Trace<Object, Object>) is do
s.elements.each{ e |
if trace.getTargetElem(e) != void then
p.elements.add(trace.getTargetElem(e) .asType (Element))
end

end

//transformation code for ModelElem2Element
abstract class ModelElem2Element {

operation conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean is do
result := true
end

operation assignments (m : ModelElem, e : Element) is do
e.name := m.name
end

operation referenceAssignments(m : ModelElem, e : Element, trace: Trace<Object, Object>) is do
end

EXAMPLE 4 — KERMETA (3/3)

//transformation code for SMElem2PNElem
abstract class SMElem2PNElem{

operation conditionFulFilled(m : SMElem) : kermeta::standard::Boolean is do
result := true
end

operation assignments(m : SMElem, e : PNElem) is do
e.id := m.id
end

operation referenceAssignments(m : SMElem, e : PNElem, trace: Trace<Object, Object>) is do

end

//transformation code for State2Place
class State2Place inherits ModelElem2Element, SMElem2PNElem({

method conditionFulFilled(m : ModelElem) : kermeta::standard::Boolean from elElem2Element is do

result := super (m)

end

method assignments(m : ModelElem, e : Element) from elElem2Element is do
super (m,e)
(e.asType (Place)) .hasToken := (m.asTy ate)) .isActive

end

ModelElem, e : Element, trace: Trace<Object, Object>)

EXAMPLE 4 — QVT-0O (1/2)

Exemplary Source Model Target Model produced by QVT-O

source

gl:State sl:Place
hame: s1 name = “s1”
id=1 — id=1
kind = “initial tl:Transition hasToken = true
isActive = true hame = “t1¢

id=3 s2:Place
. guard = ““

s2:State name = “s2“
name = “s2" id=2
id=2 target hasToken = false
kind = “final”
isActive = false

Results/Findings (according to goals)
QVT-0 supports multiple inheritance. The assignments are again executed in
parent-driven manner, i.e., first the assignment of ModelElem2Element are
executed, followed by the assignments of SME1em2PNE1em and finally, the
assignments of State2Place

EXAMPLE 4 — QVT-0 (2/2)

transformation testTrafo(in inModel : sm, out outModel : pn);

main () {
inModel.rootObjects () [Statemachine] -> map SM2Petri () ;
}

mapping Statemachine::SM2Petri() : PetriNet ({
elements := self.elements[State] -> map State2Place();
}

abstract mapping ModelElem: :ModelElem2Element () : Element {
dump ('ModelElem2Element fuer ' + self.name);
name := self.name;

}

abstract mapping SMElem::SMElem2PNElem() : PNElem {
dump ('SMElem2PNElem fuer ' + self.id.toString());
id := self.id;

}

mapping State::State2Place() : Place inherits ModelElem::ModelElem2Element, SMElem::SMElem2PNElem {
dump ('State2Place fuer ' + self.name);
hasToken := self.isActive;

EXAMPLE 4 — TGGs (1/2)

Exemplary Source Model

Target Model produced by TGGs

sl:State e

name = “s1“

id=1

kind = “initial” tl:Transition

isActive = true name = “t1“

id=3

s2:State guard =

name = “s2“

id=2 target

kind = “final”

Rule definitions see next slide

s1:Place

name = “s1”
id=1
hasToken = true

s2:Place

name = “s2“
id=2
hasToken = false

isActive = false

Results/Findings (according to goals)

TGGs support multiple inheritance. Since all assignments of a superrule are
copied explicitly into subrules, all assignments of multiple superrules are

executed in subrules.

Nevertheless, the inherited assignments must not be adjusted in a way that they
match less restrictive than the original assignments (assured by static analysis).

EXAMPLE 4 — TGGS (2/2)

TGG-Schema (type level)

SMElemTOPNElement(...)

| esources stmtermachine 0 HineToPetrinet et
| “agets
Ee—1 0 - = 6.4 | Petrinet #cObi] :Statemachine. togLink):StatemachineToPetrine rqOb{] : Patrinet
staternachine petinet
. . contains containg
r—— 0 SMElamToPNElamant prabmsat o
| sHEm S5 T} PHE i smElements |

‘SMBemToPNElemen(id Integer }

10 SeateToPlace

State 0.1

StatemachineToPetrinet(...)

screates " ccreates
Ot i Statemachine. <

pnElements

s = st i
it }wh__’

ModelElemToElement(...)

|2 k< —<"‘"' et g0tz petrinet|
e
‘statemaching petrinet |
contains containg |
wements | wamants
-.-=_[-_‘4Er_-._—‘ - Creqle i
wObl ModelElem = toalink): Mode|FlemTaoFlemen. /\ = LadiliElement.

name = name | name = name

StateToPlace(...)

srcObj? :Statemachine |- .3 / , troOfi2 |
statemachine petrinet
contains cantaing
smElements pnElements I
creats: =create
SreObi3 State creats 1rgObi3 ; Place.
! L —
id:=id < — toglinkd:StateToPlace = d:=id
name ; = name A name : = name

hasTaken : = activeFlag

IsActive : = activeFlag

ExamMPLE 4 — TNs (1/2)

=+ elements

1 H PetriNet

= pnelements

=relements [Statemachine v smelementsss ({pid=a})
Y i
| 4 foid=aval=by
1
| Modelklem H SMElem I 1
= name:String = idInt <

e 0 O «eo =
éf A A {oid=a}

,—l | % ¢ (ipid=aval

H Element
%%E hame:5tring

& (foid=al) F] PNElem

i.

|| Transition g State

= guard:String = kind:5tring

<

—
@ T fodmealoe) =gt
11
[

=
=2l

‘ | &4

H Place | PNTransition

=t / © guard:String
= ——=

A3
=rtarget
e €

= S0UrCe

@

’J 4 (foid=

value=dip hasToken:Boolean / /

e >

= = from

EXAMPLE 4 — TNs (2/2)

Exemplary Source Model

source

sl:State

name = “s1“
id=1

Target Model produced by TNs

kind = “initial“ t1:Transition

isActive = true name = “t1“

id=3
s2:State guard =
name = “s2“
id=2 target

kind = “final”
isActive = false

sl:Place

name = “s1“
id=1
hasToken = true

s2:Place

name = “s2“
id=2
hasToken = false

Results/Findings (according to goals)

TNs support multiple inheritance. Since all assignments of a superrule are copied
explicitly into subrules, all assignments of multiple superrules are executed in

subrules.

EXAMPLE 4 — ATL

Exemplary Source Model

Target Model produced by ATL

sl:State SOUICE
name = “s1“
id=1
kind = “initial“ tl:Transition
isActive = true name = “t1“
id=3
s2:State guard =
name = “s2“
id=2 target
kind = “final“
isActive = false

)
°J
)

Results/Findings (according to goals)

No support for multiple inheritance available

EXAMPLE 4 — ETL

Exemplary Source Model

Target Model produced by ETL

sl:State e
name = “s1“
id=1
kind = “initial“ t1:Transition
isActive = true name = “t1“
id=3
s2:State guard =
name = “s2“
id=2 target
kind = “final“
isActive = false

@abstract
rule ModelElem2Element
transform mElem : Statemachine!ModelElem
to elem : Petrinet!Element {
elem.name := mElem.name;

}

@abstract
rule SMElem2PNElem
transform mElem : Statemachine!SMElem
to elem : Petrinet!PNElem {
elem.id := mElem.id;

}

rule State2Place
transform mElem : Statemachine!State
to elem : Petrinet!Place
extends ModelElem2Element,
SMElem2PNElem {
elem.hasToken := mElem.isActive;

}

s1:Place

name = “s1“
id=1
hasToken = true

s2:Place

name = “s2“
id=2
hasToken = false

Results/Findings (according to goals)

ETL supports multiple inheritance. The assignments are again executed in a
parent-driven manner, i.e., first the assignments of ModelElem2Element are
executed, followed by the assignments of SME1em2PNE1em and finally, the
assignments of State2Place

EXAMPLE 5

Description

In this example Mode1Elems should be transformed into Elements and
SMElems into PNElems, both requiring abstract rules, since the classes are
abstract themselves; additionally conditions are specified, i.e., only those

ModelElems whose name is not null and those SMElems whose id is greater

0 should be transformed

Moreover, State instances should be transformed into P1ace instances,
inheriting from both abstract rules to avoid code duplicaton, thus multiple
inheritance is needed

Goal(s) of Evaluation

Check how conditions are interpreted in case of multiple inheritance

Source Metamodel Target Metamodel
SMElem ModelElem PNElem Element
id : Integer name : String id : Integer name : String
*
State 1.1 source | yansition Place L il PNTransition
*
kind : String 1.1 target guard : String hasToken : Boolean [€-2:—2

isActive : Boole

an

guard : String

EXAMPLE 5 — KERMETA

Exemplary Source Model

source

See
Example 4

isActive = false

sl:State %
name = null
. tl:Transition
id=0
kind = “initial“ name = “t1
isActive = true id=5
guard = ““
s2:State &'
source
name = “s2“
id=0 t2:Transition
.kl':d = |ntfer| hame = “t2°
isActive = false id=6
guard = ““
s3:State <
target
name = null
id=3 source
kind = “inter”

t3:Transition

s4:State

name = “t3“
id=7

uu

guard =

name = “s4“
id=4

kind = “final“
isActive = false

target

Target Model produced by Kermeta

