Lets’s Play the Token Game —
Model Transformations Powered By
Transformation Nets*

M. Wimmer!, A. Kusel?, J. Schoenboeck!, T. Reiter?,
W. Retschitzegger®, and W. Schwinger?

! Vienna University of Technology, Austria
{wimmer,schoenboeck}@big.tuwien.ac.at
2 Johannes Kepler University Linz, Austria
kusel@bioinf.jku.at, reiter@ifs.uni-linz.ac.at
wieland.schwinger@Qjku.ac.at
3 University of Vienna, Austria
werner.retschitzegger@univie.ac.at

Abstract. Model-Driven Engineering (MDE) is a software engineering
paradigm using abstract models to describe systems which are then sys-
tematically transformed to concrete implementations. Since model trans-
formations are crucial for the success of MDE, several kinds of dedicated
transformation languages have been proposed. Hybrid languages com-
bine the statefulness and the ability to define control flow of imperative
approaches with the raised level of abstraction of declarative ones. How-
ever the low-level engines employed to execute transformations lead to an
impedance mismatch between specification and execution of model trans-
formations which hampers debugging. Additionally, current approaches
lack of appropriate reuse mechanisms for resolving recurring transfor-
mation problems. Therefore, we propose a process-oriented specification
and execution of model transformations based on Transformation Nets,
a variant of Colored Petri Nets (CPNs). By using Transformation Nets,
the benefits of imperative and declarative approaches are combined, not
only for the specification of model transformations, but also for their ex-
ecution by using CPNs themselves as a transformation engine. Further-
more, Transformation Nets introduce a novel notation for implementing
transformation logic within transitions to foster reuse.

Key words: Model-Driven Engineering, Model Transformations, CPN

1 Introduction

Model-Driven Engineering (MDE) [7] is a current trend in software engineering
where models are used to describe systems which are then systematically trans-
formed to concrete implementations. Thus, MDE places models as first-class

* This work has been partly funded by the Austrian Science Fund (FWF) under grant
P21374-N13.

artifacts throughout the whole software lifecycle [3]. The main promise of MDE
is to raise the level of abstraction from technology and platform-specific con-
cepts to platform-independent and computation-independent modelling. To ful-
fill this promise, the availability of appropriate model transformation languages
is the crucial factor, since transformation languages are for MDE as important
as compilers are for high-level programming languages. Transformation scenar-
ios can be divided into vertical model transformations and horizontal model
transformations. Vertical model transformations lower the level of abstraction,
e.g., transforming UML class diagrams to relational models, whereas horizontal
model transformations transform models between two different representations
on the same level of abstraction, which is the focus of our approach, e.g., a UML
class model is transformed to an entity relationship diagram.

To specify model transformations, approaches range from purely imperative
styles allowing to define how a transformation is carried out to fully declara-
tive transformation definition styles focusing on what a transformation’s output
should be like according to a certain input. In between this spectrum, hybrid
approaches combine the statefulness and the ability to define control flow of
imperative approaches with the raised level of abstraction of declarative ones
[4]. In general, declarative and hybrid approaches use transformation engines to
execute the model transformations operating on a low level of abstraction, e.g.,
the Atlas Transformation Language (ATL) uses a stack machine [9], shown as
black-box to the transformation designer. As a consequence, debugging of model
transformations is limited to the information provided by the transformation
engine, only, most often consisting of variable values and logging messages, but
missing important information, e.g., why a certain part of a transformation is
actually executed or not. This is due to the fact that an explicit runtime model
[7] for the execution of model transformations is not supported which could be
used to observe the runtime behavior of certain transformations.

Another problem current transformation languages suffer from is that no
appropriate reuse mechanisms and pre-defined libraries for resolving recurring
model transformation problems are provided. Especially, the resolution of struc-
tural heterogeneities [10], i.e., the same concept is expressed by different meta-
model elements, represents a recurring challenge. Thus, resolving structural het-
erogeneities requires to manually specify partly tricky model transformations
again and again for each scenario.

The contribution of this paper is a novel approach for defining model trans-
formations called Transformation Nets [12], which use a variant of Colored Petri
Nets (CPNs) [8]. Transformation Nets embody a process-oriented view on model
transformations, whereby the actual transformation is carried out by reuasable
patterns of transformation logic that stream models represented by the net’s
tokens from source to target. Such a runtime model provides the explicit state-
fulness of imperative approaches through tokens contained in the net’s places.
The abstraction of control flow from declarative approaches is achieved as the
net’s transitions can fire autonomously depending on their environment and
effectively make use of implicit, data-driven control flow. Furthermore, Trans-

formation Nets provide a uniform formalism not only for representing the trans-
formation logic together with the metamodels and the models themselves, but
also for executing the transformations. Thus, no impedance mismatch between
specification and execution occurs which allows for enhanced understandability
and debuggability of model transformations. In this paper we present how a vari-
ant of CPN is employed for the domain of model transformations. Firstly, we
show how model transformations are appropriately represented with a variant
of CPNs, and secondly, a novel notion for implementing reusable transformation
logic within transitions is proposed.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the Transformation Net formalism. While, the subsequent Section 3
describes the static part of Transformation Nets, depicting how metamodels and
models are represented within Transformations Nets, Section 4 elaborates on
the dynamic part of Transformation Nets, especially how transformation logic
is specified. Section 5 reports on lessons learned by the application of Transfor-
mation Nets. Related work is discussed in Section 6, and finally, Section 7 gives
a conclusion and an outlook on future work.

2 Transformations Nets at a Glance

Within this section the basic concepts of model transformations in general and
Transformation Nets in particular are introduced.

2.1 Big Picture of Model Transformations

The general model transformation scenario is illustrated in the upper half of Fig-
ure 1 comprising a transformation with one input (source) model and one output
(target) model [4]. Both models conform to their respective metamodels which
define the abstract syntax of a modeling language. Transformation Nets pro-
vide an integrated view on model transformations by homogenously representing
metamodels, models, and transformation logic. At the same time Transforma-
tion Nets serve also as a runtime model to actually carry out the transformation.
One can differentiate between static and dynamic parts of a Transformation Net.
The static parts correspond to the transformations’ metamodel elements (rep-
resented as places), given input model elements and generated output model
elements (represented as tokens), whereas the dynamic parts corresponds to the
transformation logic itself (represented as transitions) as formalized in a meta-
model introduced in the following.

2.2 Transformation Net Metamodel

The abstract syntax of the Transformation Net is formalized by means of a meta-
model (cf. Fig. 2) conforming to the OMG’s Meta Object Facility (MOF) [1]
standard. The Transformation Net metamodel describes appropriately adapted

c

'g Source Transformation Logic Target

E Metamodel Metamodel
S A N

2 9] i implemented i

@ £ | derve iconforms p iconforms
s H h
= Source Target
©

g Model Model
= instantiate

c derive

2 T

= .

EB

Sz

(%]

c

©

[Transformation Net

Fig. 1. Conceptual Architecture of Transformation Nets

Colored Petri Net concepts [8] in order to fulfill the special requirements occur-
ring in the domain of model transformations. In particular, in order to be able to
encode metamodels and models, we introduce two kinds of places and two kinds
of tokens (cf. Sec. 3). The second major adaption concerns the transitions. Since
transitions are used to realize the transformation logic, we borrow a well estab-
lished specification technique from graph transformation formalisms [6], which
describe their transformation logic as a set of graphically encoded productions
rules (cf. Sec. 4).

Containers StaticElements
=,
*.
< Place

Net e

*
—name : String Z} AN

-

* OneColoredToken TwoColoredToken
Module | | OneColoredPlace | | TwoColoredPlace |
—color : String —fromColor : String
—toColor : String

Connectors DynamicElements

*
| Transition 0H| Placement 4 MetaToken
—name : String é A
—condition : String

—history : Tuple | OutPlacement | InPlacement OneColoredMetaToken | [TwoColoredMetaToken
—hungry : Bool —color : String —fromColor : String
> 'r —negated : Bool —toColor : String

Fig. 2. The Transformation Net Metamodel

The whole Transformation Net metamodel is divided into four subpackages
as can be seen in Fig. 2. Thereby, the package Containers comprise the modu-
larization concepts. The package StaticElements is used to represent the static
parts of a model transformation, i.e., metamodels and models. The dynamic ele-
ments, i.e., the transformation logic, are represented by concepts of the package
DynamicElements. The package Connectors finally is responsible for connecting
the static parts with the dynamic parts. In the following sections, we describe
the packages and their contained elements in detail.

3 The Static Part of Model Transformations

To represent metamodels and models in Transformation Nets a translation from
the graph-based paradigm underlying MDE to the set-based paradigm underly-
ing Petri Nets is necessary. We rely on the core concepts of an object-oriented
meta-metamodel as defined by MOF, being classes, attributes, and references.
In the following, we elaborate on how MOF concepts used in metamodels and
their respective instances are represented within Transformation Nets (cf. Fig. 3
for a summary).

Meta Object Facility (MOF) Transformation Nets CPN
Concept Example Concept Example Example
Array
Class Array OneColoredPlace O
OneColoredPlace
Array_id
Attribute - - TwoColoredPlace O
id : String TwoColoredPlace
2] contains * Array_contains
t | Reference *>—> TwoColoredPlace ©
g TwoColoredPlace
@ Collection
W | Generalization 4— NestedPlace @ Not directly supported
)
3 ordered {ordered) * Array_contains
£ -— OrderedPlace O Not directly supported
< | Reference ordered
=
9]
=) Absolute Buffer .
Not used in metamodels Capacity @ Not directly supported
Array_head
Relative head 1 Relative)
. *>—> .
Capacity Capacity © Not directly supported
Object P1:Array OneColoredToken Array 1aPr)
2 | (instance of (contained in a
g Class) OneColoredPlace) @ OneColoredPlace
5 | vaiue (ol anay | TwoColoredToken Array_id 1(1,'P1","Paper1”)
W | (nstance of AN A (contained in a Pl
o | Attribute) TwoColoredPlace) TwoColoredPlace
S | Link containg TwoColoredToken Array_contains (1/P1"S1)
= (Instance of > (contained in a
Reference) TwoColoredPlace) TwoColoredPlace

Fig. 3. Representing MOF concepts within Transformation Nets

3.1 Representing Metamodel Elements as Places

A metamodel mainly consists of classes, attributes, and references which are
mapped to places in a Transformation Net. We distinguish between two kinds of
places, namely OneColoredPlace to represent classes, and TwoColoredPlace to
represent attributes and references. Both types of places can be represented by
according data types in CPNs which are assigned to the corresponding places.
Classes represented as One-Colored Places. Abstract and concrete
classes are both represented as OneColoredPlaces. Although, abstract classes
cannot have instances, places created from abstract classes normally contain to-
kens indirectly due to other places stemming from sub-classes, (cf. below) being
contained within them. Furthermore, the name of the class becomes the name of
the place (name). The notation used to visually represent one-colored places is

an oval as traditionally used to depict places in Petri nets. Subclass relationships
are represented by nestedPlaces whereby the place corresponding to the sub-
class is contained within the place corresponding to the superclass. The tokens
contained in the“sub-place” are also visible in the “super-place”, which means
that if a token is contained in a sub-place it may also act as input token for a
transition connected to the “super-place”.

Attributes and References represented as Two-Colored Places. At-
tributes and references are represented by TwoColored Places, whereby the
name of the place consists of the name of the containing class and the name of
the attribute or reference itself, separated by an underscore (ClassName name).
Notationally, the borders of two-colored places are doubly-lined to indicate that
they contain two-colored tokens.

Orderings. References that impose an order on their links, e.g., an array el-
ement which has several elements contained in a specific order, require some
extensions to normal two-colored places. If in case of such an ordered reference,
the content of the two-colored place is internally set up as several ordered se-
quences (but not explicitly represented). For instance, for each different array
represented by different fromColor, a sequence of two-colored tokens with that
fromColor exists. Sequences in ordered places are working according to the FIFO
principle in order to facilitate the implementation of transformation logic.

Multiplicities. Places can restrict the amount of tokens they can contain.
In particular two-colored places have an absolute capacity (absCapacity) to
restrict the total number of its tokens and a relative capacity (relCapacity) to
restrict the maximum length of its sequences. Hence, multiplicities of references
can be mapped onto the relative capacity of a two-colored place. For instance,
a two-colored place with a capacity of ‘1’ may contain several tokens, but for
each token a distinct fromColor is mandatory. An absolute capacity would allow
only one token irrespective of its color inside the place, e.g., used to ensure a
sequential eradication or to represent singleton classes. Capacities are visualized
through the respective number inside the place, which is underlined in case of
an absolute capacity.

3.2 Representing Model Elements as Tokens

Objects represented as One-Colored Tokens. For every object, i.e., in-
stance of Class that occurs in a model a OneColoredToken is produced, which
is put into a place that corresponds to the respective element in the source meta-
model. The “color” is realized through a unique value (color) that is derived
from the object_id (OID).

Values and Links represented as Two-Colored Tokens. For every value
as an instance of an Attribute, as well as for every link as an instance of a
Reference, a TwoColoredToken is produced. The fromColor attribute refers to
the color of the token (thus the OID) that corresponds to the owning object. The
toColor is given by the color of the token that corresponds to the referenced
target object (the OID of the target object). Notationally, a two-colored token

is represented as a ring (depicting the fromColor) surrounding an inner circle
(depicting the toColor).

3.3 Transformation Nets by Example

By making use of an example we show how Transformation Nets can be applied
to transform arrays to linked lists. The top of Fig. 4 depicts the source and target
metamodels, as well as the input model and the desired, semantically equiva-
lent output model. The mapping of concepts between the array metamodel and
the linked list metamodel is achieved by transforming the Array class to an
equivalent LinkedList class, just like the Element classes are transformed to
Node classes. The ordered set of contains links needs to be translated into cor-
rectly set up head, next and prev links that maintain a semantically equivalent
ordering of Node objects.

Source Target
< LinkedList
= id : String ¢
0
3 head | 9.1
<]
é 0. Node ::
° NeXt 1 q String
=
T - LinkedLisl“’ﬁea
: £\ |\e
E E
£ o
S “ ;
“7’ g Sl
E a SectionSecr
= =
contains id="Paperl’
a
= : 1
- SliElement S4:Element S4:Noilg
) id="Section1* 2 id="Section4* id="Sectipn4*
g i€
3 %

g A

S2.Element S3:Element S2:Node 5| S3:Node jprev]

id="Section2" id="Section3' id="Section2" |« id="Section3*

to be generated

Fig. 4. Motivating Example: Static Part

Fig. 4 depicts the static parts of the Transformation Net for the example. The
metamodel elements Array and Element are represented by two corresponding
places in the Transformation Net. Both classes have an id property, represented
as two-colored places as well as the reference contains. The lower part of the
figure shows models conforming to the metamodels used to extract tokens which
are put into the corresponding places. The array P1 is indicated by a one-colored
token in the Array place whereas the id of the array is depicted by a two-colored

token in the Array_id place. The four elements (S1 to S4) contained in the
Array are represented by four according tokens in the Element place. In addition
four two-colored tokens are created representing the ids of the attributes and
put into the Element_id place. The four tokens in the place Array_contains
represent the links between array (depicted by the outer color) and it’s elements
(depicted by their inner color). Analogous to the source model, places for the
target model are created which are empty until the target tokens are generated
by executing the model transformation. The shown target tokens in Fig. 4 are
therefore the result of a successfully executed transformation, which are then
used to instantiate the target model.

4 The Dynamic Part of Model Transformations

The transformation logic is embodied by a system of Petri Net transitions and
additional places which reside in-between those places representing the original
input and output metamodels. In this way, tokens are streamed from the source
places through the Transformation Net and finally end up in the target places.
Hence, when a Transformation Net has been generated in its initial state, i.e.,
source tokens are already derived from the input model, a specialized Petri Net
engine executes the transformation process and streams tokens from source to
target places. The resulting tokens in the target places are then used to instan-
tiate an output model that conforms to the target metamodel. In the following
it is shown how to actually match for source model elements and how target
model elements are produced.

4.1 Matching and producing model elements by firing transitions

An execution of a model transformation has two major phases. The first phase
comprises the matching of certain elements of the source model whereas the
second phase produces the elements of the output model. This matching and
producing of model elements is supported within Transformation Nets by fir-
ing transitions. To specify their firing behavior, a mechanism well known from
graph transformation systems is used [6]. Transitions consist of input placehold-
ers (LHS of the transition) representing the pre-conditions of a certain trans-
formation, whereas output placeholders (RHS of the transition) depict its post-
condition. Those placeholders are expressed by the classes InPlacement (LHS)
and OutPlacement (RHS) in the metamodel as shown in Fig. 2. Every Placement
is connected to a source or target place using Arcs, whereby incoming and outgo-
ing arcs are represented by the classes PTArc and TPArc, respectively. To express
these pre- and post-conditions, so-called meta tokens (cf. class MetaToken in the
metamodel) are used, prescribing a certain token configuration by means of color
patterns which can be used in two different ways, either as Query Token (LHS)
or as Production Token (RHS), as shown in Fig. 5.

Query Tokens. Query tokens are meta tokens which are assigned to input
placements. Query tokens can either stand for one-colored or two-colored token

configurations, whose colors represent variables that are bound during matching
to the color of an actual input token. Note that the colors of query tokens are
not the required colors for input tokens, instead they describe configurations
that have to be fulfilled by input tokens. Normally, query tokens match for the
existence of input tokens but with the concept of negated input placements it
is also possible to check for the non-existence of certain tokens (cf. attribute
negated of class InPlacement in Fig. 2).

Production Tokens. Output placements contain so-called production to-
kens which are equally represented through the class MetaToken and its sub-
classes. For every production token in an output placement, a token is produced
in the place that is connected to the output placement via an outgoing arc. The
color of the produced token is defined by colors that are bound to the colors of
the input query tokens contained in one transition. However, it is also possible
to produce a token of a not yet existing color, for instance if the color of the
output query token does not fit to any of the input query tokens. With this
mechanism, new elements can be created in the target model which do not exist
in the source model.

LHS RHS
ql.color/;{l.color

gl.color = g2.fromColor < @ @
@ @ — new color
g2.toColor = q3.co|or< S
e i Production Token
——14-- OutPlacement
Query Token ----!
InPlacement -----

Fig. 5. Example Transition and Color Binding

By matching a certain token configuration from the input places, the tran-
sition is ready to fire with the colors of the input tokens bound to the meta
tokens residing in the input placements. The production of output tokens once a
transition fires is dependent on the matched input tokens. For example, when a
transition is simply streaming a certain token, it would produce as an output the
exact same token that was matched as the input token (cf. (a) in Figure 6). This
form of transition is especially needed for implementing one-to-one correspon-
dences between metamodel elements. Please note that the default firing behavior
of a Transformaion Net does not consume the tokens of the input places in order
to avoid race conditions as often several transitions make use of one and the same
input place. This can be changed by setting the attribute hungry of the corre-
sponding InPlacement to “true”. In order to prevent a transition to fire more
than once for a certain token configuration, the already processed configurations
are stored in the history of a transition.

4.2 Reusable Transformation Logic

Since InPlacements as well as OutPlacements are just typed to one-colored
tokens and two-colored tokens, but not to certain metamodel classes, these tran-
sitions can be reused in different scenarios. Different to CPNs which use arc-
inscriptions to encode firing behavior as shown in Fig. 6, Transformation Net
transitions encapsulate this information. In Transformation Net arcs need no
inscriptions and therefore places extracted from a metamodel can be connected
directly to predefined transitions. This kind of reuse is not restricted to single
transitions only, since through the composition of transitions by sequencing as
well as nesting the resulting transformation modules realize complex transforma-
tion logic. Furthermore, the graphical representation of pre- and post-conditions
by color patterns is similar to graph transformation patterns transformation
designers are used to. To exemplify basic firing rules, Fig. 6 shows a series of
transitions with their placements containing patterns of one- and two-colored
query and production tokens and their histories are shown below the actual
transition as well as the equivalent transitions in CPNs. These transitions rep-
resent reusable patterns which are applied in the following to solve the example
of Sec. 4.3.

(a) Streamer (b) Inverter (c) Linker (d) Peeler (e) Conditional Streamer
A
i) 7N 7D AV N o 0‘7‘71
HORO OO OO0 200
©
A @@ X|A x| (O A @[] X
History History B History
A
= (y) X) o (X,y) y
(©0-@ (@0
o
A X | A X . A X
g JAae A JAae A JAae Ar3IBbeB JAae A phacAn
ae ae aeAn S ae
8 3Bb < B[col(a) = from(a)]
(<
& | Place A contains a one Place A contains a two Place A and B contain a Place A contains a two Place A and B contain a one
colored token a colored token a one colored token a and b colored token a colored token a and b
IXx e X[from(x) = to(a)|IXx € X[from(x) = col(a
| 3Xxe X[col()= col(@)] [from(x) =to(a) Lfrom0) =col(@) 5y ¢ X feol(x) =to(a)] | 3xx & X[col(x) = col(@)]
S Ato(x) = from(a)] Ato(x) =col(b)]
(@] . .
@ | Place X contains a token X | Place X contains a token X Place X contains a_token X Place X Cf)l’\lalns & token Place X contains a token
& | whose color is the same whose colors are inverted whose from’ color is the color X wnose col?r !S e X whose color is the same
a of the matched token a and same as the ‘to’ color of as the matched token a.
as the matched token a. to those of the matched |11, ,c0 4o color is the color of | the matched token a
token a. the matched token b.

Fig. 6. Reusable Transformation Logic expressed as Transitions

Transition (a) in Fig. 6 shows a simple pattern that matches a one-colored
token from an input place and streams the exact same token to an output place,
therefore this pattern is called Streamer. It can be applied in cases of one-to-
one mappings, e.g., an array is transformed to a linked list. Transition (b)
matches a two-colored token from its input place, and produces an inverted
token in the output place. This Inverter pattern can be applied to set inverse

references (cf. "next” and ”prev” references in our example). Transition (c)
called Linker shows two one-colored query tokens on the input side, whose
matched colors determine the ”from”- and ”to”-colors of the produced output
token. This pattern is used to introduce new links between objects. Transition
(d) matches two-colored tokens from input places and peels off the outer color
of the token, therefore the name Peeler. This pattern is used to get the value
of an attribute or the target of a link which is represented by the inner color
of the two-colored token. Finally, transition (e) represents a variation of the
Streamer pattern called ConditionalStreamer adding additional query tokens
to ensure certain preconditions. For example, this pattern may be used to ensure
that before a link between two objects is set the objects to be linked have been
created.

4.3 Solution for the Motivating Example

Fig. 7 depicts the complete Transformation Net realizing the necessary transfor-
mation logic added in between the static parts of source and target places. Note
that the shown markings represent the state after execution of the Transforma-

tion Net.
“Trace” place for an ;' Conditional ™
handledarrays | = T hUeamel
; f 5| ..
{ Array } Array_i s Strea
............... $ Array (nHixlesd
Paper]]
Array_contains
@
Element_id Element

e
@@

“Trace” p\ace for
handled elements

'CU>“'<9dLlst
|nkedL head g ;
LinkedList_id
Node_id

Buffer last N
handled token

[}

nking"” neighbouring

Fig. 7. Motivating Example solved with Transformation Nets

Starting from the top, we see Transition (I) that matches one-colored
tokens from the “Array” place and propagates them into the “LinkedList” place
using the Streamer pattern. The “id” attributes are streamed once their owning
objects have been transformed, which is the case when the owning objects are
present in the nets “trace” places by applying ConditionalStreamers, namely
Transition (II) and Transition (III). Analogously, the Transition (IV)
matches two-colored tokens from the “contains” place and propagates them to
the “head” place. Note that this transition can only fire once, because the “head”
place has a relative capacity of one, only. Due to the fact that the input place is

of the ordered kind, the transition matches the tokens starting from the “zero-
th” link of the reference. The third and final case where such primitive transition
logic suffices is the transformation of all “Element” tokens to the “Node” place.
Compared to that, dealing with “contains” tokens is of more interest. Thereby,
two-colored tokens are matched from the “contains” place, and the adjacent
Transition (V) peels out the outer ring, basically producing a duplicate of an
“FElement” token. The outcome is then put into a place with absolute capacity
of one to enforce the ordering of tokens. Only if this place is empty again, the
transition matching “Array_contains” tokens can produce the follow-up token
therein. That place is cleared by the switching of the adjacent Transition (VI),
which consumes its input and moves it to its output with an absolute of capacity
one. In case both places are filled with a one-colored token, the Transition
(VII) is enabled which produces a two-colored token out of its inputs that is
streamed into the “next” place. When firing, only the token from the right-
most place is consumed, thus freeing the place to be filled again. Hence, this
Transformation Net pattern forms a buffer-like structure of two places, which
are, once they are filled, partly emptied to make space for successor tokens in the
“queue” of places with single capacity. Transition (VIII) inverts and copies
the created two-colored tokens from the “Node_next” to the “Node_prev” place.

The example has been realized with the help of our prototype tool supporting
modeling, executing, and debugging Transformation Nets. Further details about
the tool support may be found at our project page*. In order to show that
Transformations Nets hide complexity in contrast to CPNs Fig. 8 depicts an
equivalent CPN executing the same transformation. Firstly, to express the fact
that tokens are not consumed per default, tokens consumed from a place are
streamed back again. In order to avoid multiple firings every token gets an index
and an additional place storing a counter is added to a transition. The transitions
uses this counter to match for a specific token which is incremented after firing to
match for the next available token (see label (I) in Figure 8). Secondly, standard
CPNs offer no built-in concepts to express absolute and relative capacities. For
absolute capacities we therefore again add an additional place, cf. CPN patterns
presented in [11], holding the required number of tokens (see label (II) in Figure
8). Relative capacities can be expressed using a complex arc inscription, labeled
(ITI) in Figure 8. Thereby it is shown that Transformation Nets can be mapped
to standard CPNs in order to make use of already existing, efficient execution
engines or to apply formal CPN properties in order to check the specification of
the Transformation Net.

5 Lessons Learned

This section presents lessons learned from the running example and thereby
discusses key features of the Transformation Net approach.

Representation of model elements by colored tokens reveals trace-
ability. The source model to be transformed is represented by means of one-

* http://www.modeltransformation.net

1°(1,"P1","Paper1")

R ST - i,from to
1 (1,"P1","Paperl”) @ ()

i 1MLy H

@ﬂ {OneColoredPlace
: i :
H I (i,col)
1°(1,"P1") : H
(i,col) &

_ Array : reamer|
®© - H 'L........j 5'(\'\\)

OneColoredPlace ~ ***rreeeeeeryees

LinkedList_id

TwoColoredPlace (1) TwoColoredPlace

i OEFEm]

P LinkedList 1°(1,"P1")

OneCold

if(length(filter(fn x=>x=from) cur))<1 @

then 1" (i,from, to)

: else empt :
.............. B ecuennnnnnnsseggeErananict head

TwoColoredPlace

OneColoredPlace

1?(1,“51")++

1°(2,
@ 17(3,"S3")++]
1°(4,"s4")

Sectionl")++
Section2")++
Section3")++
,"Sectiond")

(i from,to)

TwoColoredPlace

1'(4,"S4","Section4")

Fig. 8. Array2LinkedList using CPN

colored tokens and two-colored tokens residing in the source places of the Trans-
formation Net whereby the actual transformation is performed by streaming
these tokens to the target places. Through this mechanism it is possible to de-
rive the source-target relationship, i.e., traceability, between model elements by
searching for same-colored tokens in source places and target places, respectively.

Visual syntax and live programming fosters debugging. Transforma-
tion nets represent a visual formalism for defining model transformations which
is especially favorable for debugging purposes. This is not least since the flow of
model elements undergoing certain transformations can be directly followed by
observing the flow of tokens whereby undesired results can be detected easily.
Another characteristic of transformation nets, that fosters debuggability, is live
programming, i.e., some piece of transformation logic can be executed and thus
tested immediately after definition without any further compilation step. There-
fore, testing can be done independently of other parts of the Transformation Net
by just setting up a suitable token configuration in the input places.

Implicit control flow eases evolution. The control flow in a transfor-
mation net is given through data dependencies between various transitions. As
a consequence, when changing a transformation, one needs to maintain a sin-
gle artifact only instead of requiring additional efforts to keep control flow and
transformation logic (in the form of rules) synchronized. For instance, when a
certain rule would need to be changed to match for additional model objects,
one has to explicitly take care to call this rule at a time when the objects to be
matched already exist.

Fine-grained model decomposition facilitates resolution of hetero-
geneities. The chosen representation of models by Transformation Nets lets
references as well as attributes become first-class citizens, resulting in a fine-
grained decomposition of models. The resulting representation in combination
with weak typing turned out to be especially favorable for the resolution of struc-
tural heterogeneities. This is since on the one hand there are no restrictions, like
a class must be instantiated before an owned attribute and since on the other
hand e.g. an attribute in the source model can easily become a class in the tar-
get model by just moving the token to the respective place. Due to this fine
grained decomposition we can not ensure a target model that is conform to its
metamodel during transformations. The conformance to the target metamodel
is checked when the target model is instantiated using the tokens in the target
places.

Transitions by color-patterns ease development but lower readabil-
ity. Currently the precondition as well as the postcondition of a transition are
just encoded by one-colored as well as two-colored tokens. On the one hand, this
mechanism eases development since e.g. for changing the direction of a link it
suffices just to swap the respective colors of the query token and the produc-
tion token. On the other hand, the larger the transformation net grows the less
readable this kind of encoding gets. Therefore, it has been proven useful to as-
sign each input as well as each output placement a human-readable label, that
describes the kind of input and output, respectively.

6 Related Work

Concerning our Transformation Net approach, we consider two orthogonal threads
of related work. First, we discuss current model transformation approaches and
point out their debugging support, and second, we elaborate on the usage of
Petri Nets for model transformations.

Model Transformation Languages. Model transformation languages in
general can be divided into imperative, declarative and hybrid approaches. Basi-
cally, imperative approaches are similar to direct manipulation of models through
some general purpose programming language API, but offer a dedicated concrete
syntax and allow to define the transformation in terms of the models abstract
syntax. The operational part of the QVT specification [2] allows to define map-
pings, which are function-like constructs that can be imperatively called to create
target elements. Declarative approaches are typically based on defining rules that
are later on interpreted by an execution engine to produce the desired result.
Hence, the actual transformation execution as well as the order of rule applica-
tion generally need not be handled by the user. The way how a transformation
is defined, is by specifying rules that constrain under which condition certain
elements of the source and target metamodel are related. One part of the QVT
specification consists of the Relations language, which allows to define rules in
the above described way. However, what a declarative approach gains in ab-
straction, it loses in flexibility. To alleviate these limitations, hybrid approaches

combine imperative and declarative styles of transformation definition. The Atlas
Transformation Language (ATL) [9] is a QVT-like language that distinguishes
between declaratively matched and imperatively called rules.

However, the benefits of an explicit runtime model for the execution is not
considered by these approaches. Instead low-level execution engines are employed
which aggravates debugging and understanding of model transformation. By
the process-oriented specification and execution of model transformations us-
ing Transformation Nets, we combine the benefits of imperative and declarative
approaches not only for the specification of transformations, but also for their ex-
ecution by using CPNs themselves as a transformation engine, which is currently
not supported by hybrid approaches.

Petri Nets employed for Model Transformations. The relatedness of
Petri nets and graph rewriting systems has induced some impact in the field
of model transformations. Especially in the area of graph transformations some
work has been conducted that uses Petri nets to check formal properties of graph
production rules. Thereby, the approach proposed in [13] translates individual
graph rules into a place/transition net and checks for its termination. Another
approach is described in [5], which applies a transition system for modeling the
dynamic behavior of a metamodel.

Compared to these two approaches, our intention to use Petri nets is totally
different. While these two approaches are using Petri nets as a back-end for auto-
matically analyzing properties of transformations by employing place/transition
nets, we are using a variant of CPNs to specify transformations and to foster
debuggability and understandability of transformations. In particular, we are
focussing on how to represent model transformations as Petri Nets in an in-
tuitive manner. This also covers the compact representation of Petri Nets to
eliminate the scalability problem of low-level Petri nets. Finally, we introduce
a specific syntax for Petri Nets used for model transformations and integrate
several high-level constructs, e.g., inhibitor arcs and pages, into our language.

7 Conclusions and Future Work

In this paper we showed how Transformation Nets, which are a variant of CPNs,
can be used to specify and execute model transformations. Thereby we showed
how metamodels, models and transformation logic can be expressed in Trans-
formation Nets, providing an integrated view on all transformation artifacts
involved as well as a dedicated runtime model to foster debugging. Finally we
showed how concepts of Transformations Nets could be expressed in terms of
CPNs.

Currently, we are working on a automated translation of Transformation Nets
to standard Colored Petri Nets in order to make use of efficient execution engines
of third party vendors. This furthermore allows us to use Petri net properties
for analyzing and verifying model transformations which is another direction
we are going to strive for future work, e.g., liveness properties to check if a
transformation finishes.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

References

10.

11.

12.

13.

Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core speci-
fication, 2006.

Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Final Adopted Specification, 2007.

J. Bézivin. On the Unification Power of Models. Journal on Software and Systems
Modeling, 4(2), 2005.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3), 2006.

J. de Lara and H. Vangheluwe. Translating Model Simulators to Analysis Models.
11th Int. Conf. on Fundamental Approaches to Software Engineering, 2008.

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of graph
grammars and computing by graph transformation: vol. 2: applications, languages,
and tools. World Scientific Publishing Co., 1999.

R. France and B. Rumpe. Model-driven Development of Complex Software: A
Research Roadmap. 29th Int. Conf. on Software Engineering, 2007.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science, Springer, 1992.

F. Jouault and I. Kurtev. Transforming Models with ATL. Model Transformations
in Practice Workshop @ MODELS’05, 2005.

F. Legler and F. Naumann. A Classification of Schema Mappings and Analysis of
Mapping Tools. 12. GI-Fachtagung fir Datenbanksysteme in Business, Technologie
und Web (BTW’07), 2007.

N. Mulyar and W. M. von der Aalst. Towards a pattern language for colored petri
nets. In K. Jensen, editor, Proceedings of Sixth Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 39-59, Aarhus, Denmark,
2005.

T. Reiter, M. Wimmer, and H. Kargl. Towards a runtime model based on colored
Petri-nets for the execution of model transformations. 3rd Workshop on Models
and Aspects @ ECOOP’07, 2007.

D. Varrd, S. Varr6-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Termination
Analysis of Model Transformations by Petri Nets. 3rd Int. Conf. on Graph Trans-
formations, 2006.

